精英家教网 > 初中数学 > 题目详情
10.化简:
(1)a•a2•a3+(-2a32-a8÷a2
(2)(a-b)2(b-a)5÷(a-b)4
(3)(-3ab)(2a2b+ab-1)
(4)(x-1)(2x+1)-2(x-5)(x+2)

分析 (1)根据整式的乘除法则即可求出答案.
(2)将a-b看成一个整体,利用整式乘法的法则即可求出答案.
(3)利用单项式乘以多项式即可求出答案.
(4)根据多项式乘以多项式即可求出答案.

解答 解:(1)原式=a6+4a6-a6=4a6
(2)原式=-(a-b)2(a-b)5÷(a-b)4
=-(a-b)3
(3)原式=-6a3b2-3a2b2+3ab
(4)原式=2x2+x-2x-1-2(x2+2x-5x-10)
=2x2-x-1-2(x2-3x-10)
=5x+19

点评 本题考查学生的运算能力,解题的关键是熟练运用整式运算的法则,本题属于基础题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

20.计算:
(1)2x2y2z•x2yz3•(3xy)2÷9x4y2z.
(2)5$\sqrt{\frac{1}{5}}$-$\sqrt{20}$+$\sqrt{45}$-($\sqrt{5}$-3)2($\sqrt{5}$+3).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.已知正方形的周长是8$\sqrt{2}$,则对角线长是4.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.已知|a|=8,|b|=3,|a+b|=a+b,则a+b=5或11.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,平面镜AB、BC相交于点B,一束光线m射到平面镜AB、BC上,经过在E、D两点反射出去,此时有∠1=∠3,∠2=∠4
(1)若∠1=50°,光线m∥n,求∠2的度数;
(2)当∠B的度数为多少时,光线m∥n?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.已知AB是⊙O的一条弦,点C是优弧$\widehat{AmB}$上一点.
(1)如图①,若点P是弦AB与$\widehat{AmB}$所围成的弓形区域(不含弦AB与$\widehat{AmB}$)内一点.求证:∠APB>∠ACB;
(2)如图①,若点P在弦AB上方,且满足∠APB=∠ACB,则点P在$\widehat{AmB}$上吗?为什么?
(3)请在图②中直接用阴影部分表示出在弦AB与$\widehat{AmB}$所围成的弓形区域内满足∠ACB<∠APB<2∠ACB的点P所在的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.已知a,b分别是6-$\sqrt{13}$的整数部分和小数部分,那么2a-b的值是(  )
A.$\sqrt{13}$B.6$\sqrt{2}$+2$\sqrt{3}$C.6$\sqrt{2}$+4$\sqrt{3}$D.以上答案都不对

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.如图,将长8cm,宽4cm的矩形纸片ABCD折叠,使点A与C重合,则折痕EF的长为2$\sqrt{5}$cm.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.如图,在长方形ABCD中,AB=6,BC=8,E为AB上一点,将△CBE沿CE翻折至△CFE,EF,CF分别与AD交于点G、H,若EG=GH,则AE的长为1.2.

查看答案和解析>>

同步练习册答案