精英家教网 > 初中数学 > 题目详情
3.如图,已知直线l1∥l2,直线l3和直线l1,l2交于点C和D,直线l3上有一点P.
(1)如图1,若P点在C,D之间运动时,问∠PAC,∠APB,∠PBD之间的关系是否发生变化,并说明理由;
(2)若点P在C,D两点的外侧运动时(P点与点C,D不重合,如图2和3),试写出∠PAC,∠APB,∠PBD之间的关系,并说明理由.(图3只写结论,不写理由)

分析 (1)当P点在C、D之间运动时,首先过点P作PE∥l1,由l1∥l2,可得PE∥l2∥l1,根据两直线平行,内错角相等,即可求得:∠APB=∠PAC+∠PBD.
(2)当点P在C、D两点的外侧运动时,由直线l1∥l2,根据两直线平行,同位角相等与三角形外角的性质,即可求得:∠PBD=∠PAC+∠APB.

解答 解:(1)如图①,当P点在C、D之间运动时,∠APB=∠PAC+∠PBD.
理由如下:
过点P作PE∥l1
∵l1∥l2
∴PE∥l2∥l1
∴∠PAC=∠1,∠PBD=∠2,
∴∠APB=∠1+∠2=∠PAC+∠PBD;

(2)如图2,当点P在C、D两点的外侧运动,且在l2下方时,∠PAC=∠PBD+∠APB.
理由如下:
∵l1∥l2
∴∠PED=∠PAC,
∵∠PED=∠PBD+∠APB,
∴∠PAC=∠PBD+∠APB.
如图3,当点P在C、D两点的外侧运动,且在l1上方时,∠PBD=∠PAC+∠APB.
理由如下:
∵l1∥l2
∴∠PEC=∠PBD,
∵∠PEC=∠PAC+∠APB,
∴∠PBD=∠PAC+∠APB.

点评 本题主要考查平行线的性质与三角形外角的性质.此题难度适中,解题的关键是掌握:两直线平行,内错角相等与两直线平行,同位角相等,注意辅助线的作法.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

13.下列结论中:①两条对角线互相平分且相等的四边形是矩形;②两条对角线互相垂直的四边形是菱形;③顺次连结四边形各边中点所得的四边形是平行四边形;④对角线互相垂直且相等的四边形是正方形;⑤平行四边形对角相等;⑥菱形每一条对角线平分一组对角.其中正确的结论是①③⑤⑥(填序号).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图1是一个大型的圆形花坛建筑物(其中AB与CD是一对互相垂直的直径),小川从圆心O出发,按图中箭头所示的方向匀速散步,并保持同一个速度走完下列三条线路::①线段OA、②圆弧A→D→B→C、③线段CO后,回到出发点.记小川所在的位置距离出发点的距离为y(即所在位置与点O之间线段的长度)与时间t之间的图象如图2所示,(注:圆周率π取近似值3)

(1)a=120,b=11.
(2)当t≤2时,试求出y关于t的关系式;
(3)在沿途某处小川遇见了他的好朋友小翔并聊了两分钟的时间,然后继续保持原速回到终点O,请回答下列两小问:
①小川渝小翔的聊天地点位于哪两点之间?并求出此时他距离终点O还有多远;
②求他此行总共花了多少分钟的时间.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图,直线y=-2x+b(b>0)交两坐标轴于点E、F,交反比例函数y=$\frac{k}{x}$(x>0,k>0)的图象于点A,B,BC⊥y轴于点C,BD⊥x轴于点D,若2BC-BD=2,则AB的长为$\sqrt{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,在四边形ABCD中,∠D=90°,AC平分∠DAB,且点C在以AB为直径的⊙O上.
(1)求证:CD是⊙O的切线;
(2)点E是⊙O上一点,连接BE,CE.若∠BCE=42°,cos∠DAC=$\frac{9}{10}$,AC=m,写出求线段CE长的思路.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,已知抛物线y=a(x+2)(x-4)(a为常数,且a>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线y=-$\frac{\sqrt{3}}{3}$x+b与抛物线的另一交点为D,且点D的横坐标为-5.
(1)求抛物线的函数表达式;
(2)P为直线BD下方的抛物线上的一点,连接PD、PB,求△PBD面积的最大值;
(3)设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F的坐标是多少时,点M在整个运动过程中用时最少?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.下列各式计算正确的是(  )
A.a2×a3=a6B.$\sqrt{\frac{3}{2}}÷\sqrt{2}=\frac{{\sqrt{3}}}{2}$C.$\frac{x-1}{{1-{x^2}}}=\frac{1}{x+1}$D.(x+y)2=x2+y2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.计算:
(1)(-3)0-4sin30°+|5|
(2)(1-x)2-3(x+1)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.将下列各式因式分解:
(1)a3-4a                  
(2)n2(m-2)-n(2-m)
(3)b3-4b2+4b           
(4)4(a+b)2-(2a-3b)2

查看答案和解析>>

同步练习册答案