精英家教网 > 初中数学 > 题目详情
如图是五个全等的小正方形,请剪二刀,把它拼成一个正方形,并画出所拼的正方形.
分析:根据题目中的要求动手操作一下即可得到答案.
解答:解:所画图形如下所示,
沿着AB和CD两条线剪开,然后如图中所画虚线进行拼接即可.

(注意此题答案不唯一).
点评:本题考查图形的拼接及剪纸问题,同时考查学生的动手操作能力和想象能力,有一定难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

21、如图1,△ABD和△AEC均为等边三角形,连接BE、CD.

(1)请判断:线段BE与CD的大小关系是
BE=CD

(2)观察图2,当△ABD和△AEC分别绕点A旋转时,BE、CD之间的大小关系是否会改变?

(3)观察图3和4,若四边形ABCD、DEFG都是正方形,猜想类似的结论是
AE=CG
,在图4中证明你的猜想;


(4)这些结论可否推广到任意正多边形(不必证明),如图5,BB1与EE1的关系是
BB1=EE1
;它们分别在哪两个全等三角形中
△AE1E和△AB1B中
;请在图6中标出较小的正六边形AB1C1D1E1F1的另五个顶点,连接图中哪两个顶点,能构造出两个全等三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

等腰三角形是我们熟悉的图形之一,下面介绍一种等分等边三角形面积的方法:如图(1),在△ABC中,AB=AC,把底边BC分成m等份,连接顶点A和底边BC各等分点的线段,即可把这个三角形的面积m等分.
问题的提出:任意给定一个正n边形,你能把它的面积m等分吗?
探究与发现:为了解决这个问题,我们先从简单问题入手:怎样从正三角形的中一心(正多边形的各对称轴的交点,又称为正多边形的中心)引线段,才能将这个正三角形的面积m等分?
如果要把正三角形的面积四等分,我们可以先连接正三角形的中心和各顶点(如图(2),这些线段将这个正三角形分成了三个全等的等腰三角形);再把所得的每个等腰三角形的底边四等分,连接中心和各边等分点(如图(3),这些线段把这个正三角形分成了12个面积相等的小三角形);最后,依次把相邻的三个小三角形拼合在一起(如图(4)).这样就把正三角形的面积四等分.

(1)实验与验证:依照上述方法,利用刻度尺,在图(5)中画出一种将正三角形的面积五等分的简单示意图;
(2)猜想与证明:怎样从正三角形的中心引线段,才能将这个正三角形的面积m等分?叙述你的分法并说明理由;
(3)拓展与延伸:怎样从正方形的中心引线段,才能将这个正方形的面积m等分?(叙述方法即可,不需说明理由)
(4)向题解决:怎样从正n边形的中心引线段,才能将这个正n边形的面积m等分?(叙述分法即可,不需说明理由).

查看答案和解析>>

科目:初中数学 来源: 题型:

 如图, 均为等边三角形,连接BE、CD.

1.(1)请判断:线段BE与CD的大小关系是             

2.(2)观察图,当分别绕点A旋转时,BE、CD之间的大小关系是否会改变?

3.(3)观察图3和4,若四边形ABCD、DEFG都是正方形,猜想类似的结论是                 ,在图4中证明你的猜想.

4.(4)这些结论可否推广到任意正多边形(不必证明),如图5,BB1与EE1的关系是       ;它们分别在哪两个全等三角形中              ;请在图6中标出较小的正六边形AB1C1D1E1F1的另五个顶点,连接图中哪两个顶点,能构造出两个全等三角形?

 

查看答案和解析>>

科目:初中数学 来源:2011-2012年福建省初三第一学期第一次月考数学卷 题型:解答题

 如图, 均为等边三角形,连接BE、CD.

1.(1)请判断:线段BE与CD的大小关系是             

2.(2)观察图,当分别绕点A旋转时,BE、CD之间的大小关系是否会改变?

3.(3)观察图3和4,若四边形ABCD、DEFG都是正方形,猜想类似的结论是                  ,在图4中证明你的猜想.

4.(4)这些结论可否推广到任意正多边形(不必证明),如图5,BB1与EE1的关系是       ;它们分别在哪两个全等三角形中               ;请在图6中标出较小的正六边形AB1C1D1E1F1的另五个顶点,连接图中哪两个顶点,能构造出两个全等三角形?

 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

等腰三角形是我们熟悉的图形之一,下面介绍一种等分等边三角形面积的方法:如图(1),在△ABC中,AB=AC,把底边BC分成m等份,连接顶点A和底边BC各等分点的线段,即可把这个三角形的面积m等分.
问题的提出:任意给定一个正n边形,你能把它的面积m等分吗?
探究与发现:为了解决这个问题,我们先从简单问题入手:怎样从正三角形的中一心(正多边形的各对称轴的交点,又称为正多边形的中心)引线段,才能将这个正三角形的面积m等分?
如果要把正三角形的面积四等分,我们可以先连接正三角形的中心和各顶点(如图(2),这些线段将这个正三角形分成了三个全等的等腰三角形);再把所得的每个等腰三角形的底边四等分,连接中心和各边等分点(如图(3),这些线段把这个正三角形分成了12个面积相等的小三角形);最后,依次把相邻的三个小三角形拼合在一起(如图(4)).这样就把正三角形的面积四等分.

(1)实验与验证:依照上述方法,利用刻度尺,在图(5)中画出一种将正三角形的面积五等分的简单示意图;
(2)猜想与证明:怎样从正三角形的中心引线段,才能将这个正三角形的面积m等分?叙述你的分法并说明理由;
(3)拓展与延伸:怎样从正方形的中心引线段,才能将这个正方形的面积m等分?(叙述方法即可,不需说明理由)
(4)向题解决:怎样从正n边形的中心引线段,才能将这个正n边形的面积m等分?(叙述分法即可,不需说明理由).

查看答案和解析>>

同步练习册答案