精英家教网 > 初中数学 > 题目详情

【题目】如图,已知A(﹣4,0.5),B(﹣1,2)是一次函数y=ax+b与反比例函数 (m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.

(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?
(2)求一次函数解析式及m的值;
(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.

【答案】
(1)

解:当﹣4<x<﹣1时,一次函数大于反比例函数的值;


(2)

解:把A(﹣4,0.5),B(﹣1,2)代入y=kx+b得,

,解得

所以一次函数解析式为y= x+

把B(﹣1,2)代入 ,得m=﹣1×2=﹣2;


(3)

解:连接PC、PD,如图,设P点坐标为(t, t+ ).

∵△PCA和△PDB面积相等,

(t+4)= 1(2﹣ t﹣ ),

解得t=﹣

∴P点坐标为(﹣ ).


【解析】(1)观察函数图象得到当﹣4<x<﹣1时,一次函数图象都在反比例函数图象上方;(2)先利用待定系数法求一次函数解析式,然后把B点坐标代入 可计算出m的值;(3)设P点坐标为(t, t+ ),利用三角形面积公式可得到 (t+4)= 1(2﹣ t﹣ ),解方程得到t=﹣ ,从而可确定P点坐标.
【考点精析】解答此题的关键在于理解一次函数的概念的相关知识,掌握一般地,如果y=kx+b(k,b是常数,k不等于0),那么y叫做x的一次函数,以及对一次函数的图象和性质的理,了解一次函数是直线,图像经过仨象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与Y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】请认真观察图形,解答下列问题:

(1)根据图中条件,用两种方法表示两个阴影图形的面积的和(只需表示,不必化简);
(2)由(1),你能得到怎样的等量关系?请用等式表示;
(3)如果图中的a,b(a>b)满足a2+b2=53,ab=14,求:①a+b的值;②a4﹣b4的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上.

(1)△ABC的面积等于
(2)若四边形DEFG是△ABC中所能包含的面积最大的正方形,请你在如图所示的网格中,用直尺和三角尺画出该正方形,并简要说明画图方法(不要求证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).

(1)求出△ABC的面积;

(2)在图中作出△ABC关于y轴的对称图形△A1B1C1

(3)写出点A1,B1,C1的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P为∠AOB内一定点,M,N分别是射线OA,OB上一点,当PMN周长最小时,∠OPM=50°,则∠AOB=___________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知点B的坐标是(﹣1,0),并且OA=OC=4OB,动点P在过A,B,C三点的抛物线上.

(1)求抛物线的解析式;
(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;
(3)过动点P作PE垂直于y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,写出点P的坐标(不要求写解题过程).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某人从A城出发,前往距离A30千米的B城.现在有三种方案供他选择:

①骑自行车,其速度为15千米/时;

②蹬三轮车,其速度为10千米/时;

③骑摩托车,其速度为40千米/时.

(1)选择哪种方式能使他从A城到达B城的时间不超过2小时?请说明理由;

(2)设此人在行进途中离B城的距离为s(千米),行进时间为t(),就(1)所选定的方案,试写出st之间的函数关系式(注明自变量t的取值范围),并在如图所示的平面直角坐标系中画出函数的图象

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商品的进价为每件20元,售价为每件25元时,每天可卖出250件.市场调查反映:如果调整价格,一件商品每涨价1元,每天要少卖出10件.
(1)求出每天所得的销售利润w(元)与每件涨价x(元)之间的函数关系式;
(2)求销售单价为多少元时,该商品每天的销售利润最大;
(3)商场的营销部在调控价格方面,提出了A,B两种营销方案.
方案A:每件商品涨价不超过5元;
方案B:每件商品的利润至少为16元.
请比较哪种方案的最大利润更高,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.

(1)求证:DE是⊙O的切线;
(2)若DE=6,AE= ,求⊙O的半径;
(3)在第(2)小题的条件下,则图中阴影部分的面积为

查看答案和解析>>

同步练习册答案