试题分析:连接BM,EM,BE,由题设,得四边形ABNM和四边形FENM关于直线MN对称,即可到得MN垂直平分BE,则BM=EM,BN=EN.根据正方形的性质可得∠A=∠D=∠C=90°,设AB=BC=CD=DA=2,由
可得CE=DE=1,设BN=x,则NE=x,NC=2-x,在Rt△CNE中,根据勾股定理即可列方程求得x的值,从而得到BN的长,在Rt△ABM和在Rt△DEM中,根据勾股定理可得AM
2+AB
2=BM
2,DM
2+DE
2=EM
2,则AM
2+AB
2=DM
2+DE
2.设AM=y,则DM=2-y,
即可列方程求得
的值;当四边形ABCD为正方形时,连接BE,
,不妨令CD=CB=n,则CE=1,设BN=x,则EN=x,EN
2=NC
2+CE
2,x
2=(n-x)
2+1
2,x=
;作MH⊥BC于H,则MH=BC,又点B,E关于MN对称,则MN⊥BE,∠EBC+∠BNM=90°;而∠NMH+∠BNM=90°,故∠EBC=∠NMH,则△EBC≌△NMH,则NH=EC=1,AM=BH=BN-NH=
,从而可以求得结果.
连接BM,EM,BE
由题设,得四边形ABNM和四边形FENM关于直线MN对称.
∴MN垂直平分BE,
∴BM=EM,BN=EN.
∵四边形ABCD是正方形,
∴∠A=∠D=∠C=90°,设AB=BC=CD=DA=2.
∵
,
∴CE=DE=1.
设BN=x,则NE=x,NC=2-x.
在Rt△CNE中,NE
2=CN
2+CE
2.
∴x
2=(2-x)
2+1
2,
解得
,即
在Rt△ABM和在Rt△DEM中,AM
2+AB
2=BM
2,DM
2+DE
2=EM
2,
∴AM
2+AB
2=DM
2+DE
2.
设AM=y,则DM=2-y,
∴y
2+2
2=(2-y)
2+1
2,
解得
,即
∴
当四边形ABCD为正方形时,连接BE,
,
不妨令CD=CB=n,则CE=1,设BN=x,则EN=x,EN
2=NC
2+CE
2,x
2=(n-x)
2+1
2,x=
;
作MH⊥BC于H,则MH=BC,
又点B,E关于MN对称,则MN⊥BE,∠EBC+∠BNM=90°;
而∠NMH+∠BNM=90°,故∠EBC=∠NMH,则△EBC≌△NMH,
∴NH=EC=1,AM=BH=BN-NH=
则:
.
点评:折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.