精英家教网 > 初中数学 > 题目详情
如图,将边长为2的正方形纸片ABCD折叠,使点B 落在CD上,落点记为E(不与点C,D重合),点A落在点F处,折痕MN交AD于点M,交BC于点N.若,则BN的长是   的值等于     ;若,且为整数),则的值等于       (用含的式子表示).

试题分析:连接BM,EM,BE,由题设,得四边形ABNM和四边形FENM关于直线MN对称,即可到得MN垂直平分BE,则BM=EM,BN=EN.根据正方形的性质可得∠A=∠D=∠C=90°,设AB=BC=CD=DA=2,由可得CE=DE=1,设BN=x,则NE=x,NC=2-x,在Rt△CNE中,根据勾股定理即可列方程求得x的值,从而得到BN的长,在Rt△ABM和在Rt△DEM中,根据勾股定理可得AM2+AB2=BM2,DM2+DE2=EM2,则AM2+AB2=DM2+DE2.设AM=y,则DM=2-y,
即可列方程求得的值;当四边形ABCD为正方形时,连接BE,,不妨令CD=CB=n,则CE=1,设BN=x,则EN=x,EN2=NC2+CE2,x2=(n-x)2+12,x=;作MH⊥BC于H,则MH=BC,又点B,E关于MN对称,则MN⊥BE,∠EBC+∠BNM=90°;而∠NMH+∠BNM=90°,故∠EBC=∠NMH,则△EBC≌△NMH,则NH=EC=1,AM=BH=BN-NH=,从而可以求得结果.
连接BM,EM,BE

由题设,得四边形ABNM和四边形FENM关于直线MN对称.
∴MN垂直平分BE,
∴BM=EM,BN=EN.
∵四边形ABCD是正方形,
∴∠A=∠D=∠C=90°,设AB=BC=CD=DA=2.

∴CE=DE=1.
设BN=x,则NE=x,NC=2-x.
在Rt△CNE中,NE2=CN2+CE2
∴x2=(2-x)2+12
解得,即
在Rt△ABM和在Rt△DEM中,AM2+AB2=BM2,DM2+DE2=EM2
∴AM2+AB2=DM2+DE2
设AM=y,则DM=2-y,
∴y2+22=(2-y)2+12
解得,即

当四边形ABCD为正方形时,连接BE,
不妨令CD=CB=n,则CE=1,设BN=x,则EN=x,EN2=NC2+CE2,x2=(n-x)2+12,x=
作MH⊥BC于H,则MH=BC,

又点B,E关于MN对称,则MN⊥BE,∠EBC+∠BNM=90°;
而∠NMH+∠BNM=90°,故∠EBC=∠NMH,则△EBC≌△NMH,
∴NH=EC=1,AM=BH=BN-NH=
则:
点评:折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,在菱形ABCD中,边长为10,∠A=60°.顺次连结菱形ABCD各边中点,可得四边形A1B1C1D1;顺次连结四边形A1B1C1D1各边中点,可得四边形A2B2C2D2;顺次连结四边形A2B2C2D2各边中点,可得四边形A3B3C3D3;按此规律继续下去….则四边形A2B2C2D2的周长是     ;四边形A2013B2013C2013D2013的周长是     

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图1,每个小正方形的边长均为1,按虚线把阴影部分剪下来,用剪下来的阴影部分重新拼成如图2所示的正方形,那么所拼成的正方形的边长为
A.B.2C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,菱形ABCD和菱形ECGF的边长分别为3和4,∠A=120°,则图中阴影部分的面积是
A.B.C.D.3

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在菱形中,,点边的中点,点边上一动点(不与点重合),延长交射线于点,连接.

(1)求证:四边形是平行四边形;
(2)填空:①当的值为      时,四边形是矩形;
②当的值为       时,四边形是菱形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在四边形ABCD中,ÐADB=ÐCBD=90°,BE//CD交AD于E , 且EA=EB.若AB=,DB="4," 求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AD∥BC,∠A=90°,以点B为圆心,BC长为半径画弧,交射线AD于点E,连接BE,过点C作CF⊥BE,垂足为F,求证:AB=FC.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,梯形ABCD中,AD//BC,BC=5,AD=3,对角线AC⊥BD,且∠DBC=30°,求梯形ABCD的高。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图所示,是由正八边形与正方形构成的组合图案,图中阴影部分为植草区域,若正八边形与其内部小正方形的边长都为a,则植草区域的面积为(图中阴影部分的面积)
A.2a2B.3a2C.4a2D.5a2

查看答案和解析>>

同步练习册答案