精英家教网 > 初中数学 > 题目详情
19.求$\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{…}}}}$的值.

分析 设$\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{…}}}}$=m,从而得出m2=2-$\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{…}}}}$=2-m,解关于m的方程即可,m是非负数,再取舍即可.

解答 解:设$\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{…}}}}$=m,
∴m2=2-$\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{…}}}}$,
∴m2=2-m,
∴m2+m-2=0,
∴m1=-2(舍),m2=1,
∵m是非负数,
∴m=1,
∴$\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{…}}}}$的值为1.

点评 本题考查了二次根式的化简求值,设出$\sqrt{2-\sqrt{2-\sqrt{2-\sqrt{…}}}}$=m是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.已知∠AC0=45°,P是线段AC上任一点,(P不与A、C重合),连OP,作PE⊥OP,且PE=OP,连AE,试判断AE和OA的位置关系,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知:$\sqrt{a+4}$+b2-6b+9=0,求(a+b)2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.小丽和小萍10次100m跑测试的成绩如下(单位:s):
小丽:14.8,15.5,13.9,14.4,14.1,14.7,15.0,14.2,14.9,14.5;
小萍:14.3,15.1,15.0,13.2,14.2,14.3,13.5,16.1,14.4,14.8.
如果要从她们两人中选一人参加100m竞赛,那么应选谁参加更能取得好成绩?说说你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.在矩形ABCD中,AB=3,AD=4,点P是对角线AC上的一动点(点P与点A、C不重合)
(1)如图1,如果AP=3,求△PAB的面积;
(2)如图2,过点P作PQ⊥PB,PQ分别交射线BC和射线DC于点E、Q.
①设PB=x,PQ=y,求y关于x的函数关系式,并写出函数定义域;
②如果CQ=1,写出AP的长.(不必写出解题过程)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,在△ABC中,∠ABC=100°,CE平分∠ACB交AB于点E,点D在AC上,且∠CBD=20°.
(1)求证:BA是△CBD的外角平分线;
(2)求∠CED的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.在“数学晚会“上,七年级的10个同学藏在10个大盾牌后面,男同学盾牌前面的式子计算结果是一个正数,女同学盾牌前面的式子计算结果是一个负数,这10个盾牌如图所示,请你通过计算,求出盾牌后面男、女同学各有多少人.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.在Rt△ABC中,∠C=90°.
(1)已知a:b=3:4,c=10,则a=6,b=8;
(2)已知a=6,b=8,则斜边c上的高h=4.8.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知四边形ABCD为矩形,判断A,B.C.D四个点是否在同一个圆上,并说明理由.

查看答案和解析>>

同步练习册答案