精英家教网 > 初中数学 > 题目详情
某人骑车沿直线旅行,先前进了千米,休息了一段时间,又原路原速返回了千米(),再掉头沿原方向以比原速大的速度行驶,则此人离起点的距离与时间的函数关系的大致图象是(     ).
D.

试题分析:A、掉头沿原方向加速行驶的图象要比原来的图象更陡,所以A选项错误;
B、休息了一段时间,表明中间有一段图象与横轴平行,所以B选项错误;
C、休息了一段时间,又沿原路原速返回了b千米,由于b<a,所以没回到出发地,图象与横轴没交点,所以C选项错误;
D、先前进了a千米,对应的图象为正比例函数图象;休息了一段时间,对应的图象为横轴平行的线段;沿原路原速返回了b千米(b<a),对应的图象为一次函数图象,S随t的增大而减小且与横轴没交点;掉头沿原方向加速行驶,对应的图象为一次函数图象,S随t的增大而增大,并且图象更陡,所以D选项正确.
故选D.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

是任意两个不等实数,我们规定:满足不等式的实数的所有取值的全体叫做闭区间,表示为. 对于一个函数,如果它的自变量与函数值满足:当m≤≤n时,有m≤≤n,我们就称此函数是闭区间上的“闭函数”.
(1)反比例函数是闭区间上的“闭函数”吗?请判断并说明理由;
(2)若一次函数是闭区间上的“闭函数”,求此函数的表达式;
(3)若二次函数是闭区间上的“闭函数”,直接写出实数 的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

一次函数的图象如图所示,则下列结论:①;②;③当时,中,正确的个数是 (   )
A.0B.1 C.2D.3

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在学习三角形中线的知识时,小明了解到:三角形的任意一条中线所在的直线可以把该三角形分为面积相等的两部分。进而,小明继续研究,过四边形的某一顶点的直线能否将该四边形平分为面积相等的两部分?他画出了如下示意图(如图1),得到了符合要求的直线AF.

小明的作图步骤如下:
第一步:连结AC;
第二步:过点B作BE//AC交DC的延长线于点E;
第三步:取ED中点F,作直线AF;
则直线AF即为所求.
请参考小明思考问题的方法,解决问题:
如图2,五边形ABOCD,各顶点坐标为:A(3,4),B(0,2),O(0,0),C(4,0),D(4,2).请你构造一条经过顶点A的直线,将五边形ABOCD分为面积相等的两部分,并求出该直线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,矩形ABCD的边AD=6,A(1,0), B(9,0),直线y=kx+b经过B、D两点.
(1)求直线y=kx+b的表达式;
(2)将直线y=kx+b平移,当它与矩形没有公共点时,直接写出b的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,点A的坐标为(6,0),点B为y轴的负半轴上的一个动点,分别以OB,AB为直角边在第三、第四象限作等腰Rt△OBF,等腰Rt△ABE,连接EF交y轴于P点,当点B在y轴上移动时,PB的长度为( )
A.2B.3
C.4D.PB的长度随点B的运动而变化

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知一次函数与反比例函数的图象交于点A(-4,-2)和B(a,4).

(1)求反比例函数的解析式和点B的坐标;
(2)根据图象回答,当x在什么范围内时,一次函数的值大于反比例函数的值?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知直线y=kx+b,若k+b=-5,kb=6,那么该直线不经过第       象限.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知直线的方程式为ax+by+c=0,且a<0<c<b,则函数的图象为(  )
         
A                 B.                C.              D.

查看答案和解析>>

同步练习册答案