精英家教网 > 初中数学 > 题目详情

(2011•陕西)如图,二次函数的图象经过△AOB的三个顶点,其中A(﹣1,m),B(n,n)
(1)求A、B的坐标;
(2)在坐标平面上找点C,使以A、O、B、C为顶点的四边形是平行四边形.
①这样的点C有几个?
②能否将抛物线平移后经过A、C两点,若能,求出平移后经过A、C两点的一条抛物线的解析式;若不能,说明理由.

解:(1)∵y=的图象过点A(﹣1,m)

即m=1
同理:n=
解之,得n=0(舍)或n=2
∴A(﹣1,1),B(2,2)
(2)①由题意可知:这样的C点有3个
②能
当平移后的抛物线经过A、C1两个点时,将B点向左平移3个单位再向下平移1个单位.使点B移到A点,这时A、C1两点的抛物线的解析式为y+1=
即y=
另两条平移后抛物线的解析式分别为:
i)经过A、C2两点的抛物线的解析式为
ii)设经过A、C3两点的抛物线的解析式为,OC3可看作线段AB向右平移1个单位再向下平移1个单位得到∴C3(3,1)
依题意,得解得
∴经过A、C3两点的抛物线的解析式为

解析

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2011•陕西)如图①,在矩形ABCD中,将矩形折叠,使B落在边AD(含端点)上,落点记为E,这时折痕与边BC或者边CD(含端点)交于F,然后展开铺平,则以B、E、F为顶点的三角形△BEF称为矩形ABCD的“折痕三角形”
(1)由“折痕三角形”的定义可知,矩形ABCD的任意一个“折痕△BEF”是一个  三角形
(2)如图②、在矩形ABCD中,AB=2,BC=4,,当它的“折痕△BEF”的顶点E位于AD的中点时,画出这个“折痕△BEF”,并求出点F的坐标;
(3)如图③,在矩形ABCD中,AB=2,BC=4,该矩形是否存在面积最大的“折痕△BEF”?若存在,说明理由,并求出此时点E的坐标?若不存在,为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•陕西)如图,AC∥BD,AE平分∠BAC交BD于点E,若∠1=64°,则∠2=  

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•陕西)如图,在?ABCD中,E、F分别是AD、CD边上的点,连接BE、AF,他们相交于G,延长BE交CD的延长线于点H,则图中的相似三角形共有(  )

A、2对         B、3对
C、4对         D、5对

查看答案和解析>>

科目:初中数学 来源:2011年初中毕业升学考试(陕西卷)数学解析版 题型:解答题

(2011•陕西)如图①,在矩形ABCD中,将矩形折叠,使B落在边AD(含端点)上,落点记为E,这时折痕与边BC或者边CD(含端点)交于F,然后展开铺平,则以B、E、F为顶点的三角形△BEF称为矩形ABCD的“折痕三角形”
(1)由“折痕三角形”的定义可知,矩形ABCD的任意一个“折痕△BEF”是一个  三角形
(2)如图②、在矩形ABCD中,AB=2,BC=4,,当它的“折痕△BEF”的顶点E位于AD的中点时,画出这个“折痕△BEF”,并求出点F的坐标;
(3)如图③,在矩形ABCD中,AB=2,BC=4,该矩形是否存在面积最大的“折痕△BEF”?若存在,说明理由,并求出此时点E的坐标?若不存在,为什么?

查看答案和解析>>

科目:初中数学 来源:2011年初中毕业升学考试(陕西卷)数学解析版 题型:解答题

(2011•陕西)如图,在△ABC中,∠B=60°,⊙O是△ABC外接圆,过点A作⊙O的切线,交CO的延长线于P点,CP交⊙O于D
(1)求证:AP=AC;
(2)若AC=3,求PC的长.

查看答案和解析>>

同步练习册答案