精英家教网 > 初中数学 > 题目详情

【题目】已知RtABC中,∠B=90°

(1)根据要求作图(尺规作图,保留作图痕迹,不写画法)

①作∠BAC的平分线ADBCD;

②作线段AD的垂直平分线交ABE,交ACF,垂足为H;

③连接ED.

(2)在(1)的基础上写出一对相似比不为1的相似三角形和一对全等三角形:

___________________________________________________

【答案】, 全等三角形有△AHF≌△AHE,AHF≌△DHE,AEH≌△DEH.

【解析】

(1)①用圆规以点A为圆心,任意长为半径画弧,再以弧与角两边的交点MN为圆心,大于MN的一半为半径画弧,两弧的交点为P,连接AP并延长,与BC交于点DAD就是所以求的角平分线;
②用圆规以点AD为圆心,大于AD的一半为半径画弧,两弧交于两点,通过两个交点画直线交ABE,交ACF,垂足为H
③连接ED
(2)此题主要根据相似和全等的性质来判定.答案不唯一.

解:

(2)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线y=kx-1x轴、y轴分别交于B、C两点,OB:OC=.

(1)B点的坐标和k的值.

(2)若点A(xy)是第一象限内的直线y=kx-1上的一个动点,当点A运动过程中,试写出△AOB的面积Sx的函数关系式;

(3)(2)的条件下,当点A运动到什么位置时,△AOB的面积是.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知的平分线与的垂直平分线相交于点,垂足分别为,则的长为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据下列要求,解答相关问题.

(1)请补全以下求不等式﹣2x2﹣4x0的解集的过程

①构造函数,画出图象:根据不等式特征构造二次函数y=﹣2x2﹣4x;并在下面的坐标系中(图1)画出二次函数y=﹣2x2﹣4x的图象(只画出图象即可).

②求得界点,标示所需,当y=0时,求得方程﹣2x2﹣4x=0的解为______;并用锯齿线标示出函数y=﹣2x2﹣4x图象中y0的部分.

③借助图象,写出解集:由所标示图象,可得不等式﹣2x2﹣4x0的解集为_______

(2)利用(1)中求不等式解集的步骤,求不等式x2﹣2x+14的解集.

①构造界点,画出图象;

②求得界点,标志所需;

③借助图象,写出解集

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点E,F分别平行四边形ABCD是的边BC,AD上的点,点E是线段BC的中点,且AE=BE,CF=FD,tanB=,若CD=4,求四边形AECF的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)已知,求的最小值.

爱思考的小思想到了一种方法:先用表示得:_____

再把代入得到:______

再利用配方法得到:(_____)+______

根据完全平方式的非负性,就得到了的最小值是______.

请你补充完成小思的解答过程:

(2)根据小思的方法,请你求出:当时,求出的最小值.

(3)但是假如变成,求的最小值的时候小思的方法就不好用了,因此喜欢面对挑战的小喻同学想到了一种叫增量代换法:

.

的最小值是.

参考小喻的方法,当时,

求出的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=﹣2x+7x轴、y轴分别相交于点C、B,与直线y=x相交于点A.

(1)A点坐标;

(2)△OAC的面积;

(3)如果在y轴上存在一点P,使△OAP是以OA为底边的等腰三角形,求P点坐标

(4)在直线y=﹣2x+7上是否存在点Q,使△OAQ的面积等于6?若存在,请求出Q点的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在进行二次根式化简时,我们有时会碰上如一样的式子,这样的式子我们可以将其进一步化简以上这种化简的方法叫做分母有理化,请利用分母有理化解答下列问题:

1)化简:

2)若a的小数部分,求的值;

3)矩形的面积为3+1,一边长为2,求它的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知动点A在函数y=(x>0)的图象上,ABx轴于点B,ACy轴于点C,延长CA至点D,使AD=AB,延长BA至点E,使AE=AC,直线DE分别交x轴,y轴于点P,Q,当QE:DP=9:25时,图中的阴影部分的面积等于___

查看答案和解析>>

同步练习册答案