精英家教网 > 初中数学 > 题目详情
四年一度的国际数学家大会于2002年8月20日在北京召开,大会会标如图1所示.它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形,若大正方形的面积为13.每个直角三角形两直角边的和为5,求中间小正方形的面积.

【答案】分析:可以设直角三角形的直角边中长边为a,短边为b,根据大正方形面积为13和a+b=5列出方程组,解方程组即可解题.
解答:解:设直角三角形的长直角边为a,短直角边为b,
则存在
解得
∴小正方形的面积为(3-2)2=1.
答:小正方形的面积为1.
点评:本题考查了勾股定理在直角三角形中的灵活应用,正方形各边长相等的性质,正确列出方程组并且求解是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

24、四年一度的国际数学家大会会标如图甲,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.现有一张长为6.5cm、宽为2cm的纸片,如图乙,请你根据图甲的启示将它分割成6块,再拼合成一个正方形.(要求:先在图乙中画出分割线,再画出拼成的正方图甲形并标明相应数据)

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)四年一度的国际数学家大会于2002年8月20日在北京召开,大会会标如图(1).它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积为13,每个直角三角形两直角边的和是5,求中间小正方形的面积.
(2)现有一张长为6.5cm,宽为2cm的纸片,如图(2),请你将它分割成6块,再拼合成一个正方形.
(要求:先在图(2)中画出分割线,再画出拼成的正方形并标明相应数据)精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网四年一度的国际数学家大会于2002年8月20日在北京召开,大会会标如图1所示.它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形,若大正方形的面积为13.每个直角三角形两直角边的和为5,求中间小正方形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网四年一度的国际数学家大会于2002年8月20日在北京召开,大会会标如图,它是由4个相同的直角三角形与中间的小正方形拼成的一个大正方形,若大正方形的面积为13,每个直角三角形两直角边的和是5,则中间小正方形的面积等于
 

查看答案和解析>>

科目:初中数学 来源:2013届安徽全椒八年级下第三次月考数学试卷(解析版) 题型:解答题

 

(1)四年一度的国际数学家大会于2002年8月20日在北京召开,大会会标如下图1,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积为13,每个直角三角形两直角边的和是5,求中间小正方形的面积.

(2)(2)现有一张长为6.5cm,宽为2cm的纸片,如图9,请你将它分割成6块,再拼合成一个正方形.(要求:先在图2中画出分割线,再画出拼成的正方形并标明相应数据)

                             

 

查看答案和解析>>

同步练习册答案