精英家教网 > 初中数学 > 题目详情

【题目】如果一个多位自然数的任意两个相邻数位上,左边数位上的数总比右边数位上的数小1,那么我们把这样的自然数叫做相连数,例如:234456756789......都是相连数”.

1)请直接写出最大的两位相连数与最小的三位相连数,并求它们的和;

2)若某个相连数恰好等于其个位数的576倍,求这个相连数”.

【答案】1212;(2)这个“相连数”为:3456

【解析】

1)根据题意得出数字,相加即可.

2)先由题意得出x的范围,再分类讨论列出式子即可.

1)由题意得:最大的两位“相连数”:89;最小的三位“相连数”:123

它们的和:89+123=212

2)设这个“相连数”的个位数为x.

1x9

1×576≤这个“相连数”≤9×576=5211

∴这个数可能为三位数或四位数

①当这个数为三位数时:

100x-2+10x-1+x=576x

100x-200+10x-10+x=576x

465x=210

x=

不符合题意,舍去

②当这个数为四位数时:

1000x-3+100x-2+10x-1+x=576x

1000x-3000+100x-200+10x-10+x=576x

535x=3210

x=6

∴这个“相连数”为:3456

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,一次函数的图象交轴、轴分别于两点,交直线

1)求点的坐标;

2)若,求的值;

3)在(2)的条件下,是线段上一点,轴于,交,若,求点的坐标。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠A=90°,点DE分别在ACBC上,且CD·BCAC·CE,以E为圆心,DE长为半径作圆,⊙E经过点B,与ABBC分别交于点FG

(1)求证:AC是⊙E的切线;

(2)若AF=4,CG=5,

①求⊙E的半径;

②若Rt△ABC的内切圆圆心为I,则IE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小华将一条直角边长为1的一个等腰直角三角形纸片(如图1),沿它的对称轴折叠1次后得到一个等腰直角三角形(如图2),再将图2的等腰直角三角形沿它的对称轴折叠后得到一个等腰直角三角形(如图3),则图3中的等腰直角三角形的一条腰长为_________;同上操作,若小华连续将图1的等腰直角三角形折叠n次后所得到的等腰直角三角形(如图n+1)的一腰长为_________.

1 2 3 n+1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=AC,以AC为直径作BC于点D,过点DFEAB于点E,交AC的延长线于点F.

(1)求证: EF相切;

(2)AE=6,,求EB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将一条数轴在原点O和点B处各折一下,得到一条折线数轴.图中点A表示﹣6,点B表示10,点C表示14,我们称点A和点C在数轴上相距20个长度单位.动点P从点A出发,以2单位/秒的速度沿着折线数轴的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.

问:

1)动点P从点A运动至C点需要时间为 秒;PQ两点相遇时,求出相遇点M所对应的数是

2)求当t为何值时,PO两点在数轴上相距的长度与QB两点在数轴上相距的长度相等.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用一条直线 m 将如图 1 的直角铁皮分成面积相等的两部分.图 2、图 3 分别是甲、乙两同学给出的作法,对于两人的作法判断正确的是(

A. 甲正确,乙不正确B. 甲不正确,乙正确

C. 甲、乙都正确D. 甲、乙都不正确

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在括号内注明说理依据.如图已知∠B=D,1=2,试猜想∠A与∠C的大小关系,并说明理由.

解:猜想∠A=C

∵∠1=2 (已知)

1=EGC   

∴∠2=EGC   

BFDE   

∴∠B=AED   

∵∠B=D   

∴∠AED=D (等量代换)

ABCD   

∴∠A=C   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】同学们都知道,表示5与 -2之差的绝对值,实际上也可以理解为 5 与 -2两数在数轴上所对的两点之间的距离,则使得这样的整数____个.

查看答案和解析>>

同步练习册答案