精英家教网 > 初中数学 > 题目详情
20.小王在解关于x的方程2a-2x=15时,误将-2x看作+2x,得方程的解x=3,求原方程的解.

分析 首先根据2a+2x=15的解是x=3,求出a的值是多少;然后将方程移项,合并同类项,系数化为1,求出方程的解是多少即可.

解答 解:∵2a+2x=15的解是x=3,
∴2a+2×3=15,
∴2a+6=15,
解得a=$\frac{9}{2}$,
∴2×$\frac{9}{2}$-2x=15,
∴9-2x=15,
移项,可得2x=9-15,
整理,可得2x=-6,
∴原方程的解是x=-3.

点评 此题主要考查了解一元一次方程的方法,要熟练掌握,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

10.已知M是线段AB的中点,N是线段BC的中点.
(1)若AB=10厘米,BC=6厘米,则MN=8厘米或2厘米;
(2)若AB=a,BC=b,则MN=$\frac{1}{2}$(a+b)或$\frac{1}{2}$|a-b|(用含a、b的式子表示);
(3)若AC=m,求MN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.已知二次函数y=x2-2x-3与x轴交于A、B两点(A点在B点的左边).
(1)求A、B两点的坐标;
(2)在抛物线上存在一点P使△ABP的面积为10,请求出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图:抛物线y1=ax2+bx+c与直线y2=kx+b交于A(-3,0)、C(0,-3)两点,抛物线与x轴交于另一点B(1,0).利用图象填空:
(1)方程ax2+bx+c=0的根为x=-3或1;
(2)方程ax2+bx+c=-3的根为x=-2或0;
(3)若y1<y2,则x的取值范围为-3<x<0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.在不透明的袋子中有四张标着数字1,2,3,4的卡片,小明、小华两人按照各自的规则玩抽卡片游戏.
小明画出树状图如图所示:

小华列出表格如下:
第一次
第二次
1234
1(1,1)(2,1)(3,1)(4,1)
2(1,2)(2,2)(4,2)
3(1,3)(2,3)(3,3)(4,3)
4(1,4)(2,4)(3,4)(4,4)
回答下列问题:
(1)根据小明画出的树形图分析,他的游戏规则是,随机抽出一张卡片后不放回(填“放回”或“不放回”),再随机抽出一张卡片;
(2)根据小华的游戏规则,表格中①表示的有序数对为(3,2);
(3)规定两次抽到的数字之和为奇数的获胜,按照各自的规则,你认为谁获胜的可能性大?说明理由?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,直角梯形ABCD中,AB∥DC,∠DAB=90°,AD=2DC=4,AB=6.动点M以每秒1个单位长的速度,从点A沿线段AB向点B运动;同时点P以相同的速度,从点C沿折线C-D-A向点A运动.当点M到达点B时,两点同时停止运动.过点M作直线l∥AD,与线段CD的交点为E,与折线A-C-B的交点为Q.点M运动的时间为t(秒).
(1)当t=0.5时,求线段QM的长;
(2)当M在AB上运动时,是否可以使得以C、P、Q为顶点的三角形为直角三角形?若可以,请求t的值;若不可以,请说明理由.
(3)当t>2时,连接PQ交线段AC于点R.请探究$\frac{CQ}{RQ}$是否为定值,若是,试求这个定值;若不是,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.计算
(1)-20+(-14)-(-18)-13
(2)0.5+(-$\frac{1}{4}$)-(-2.25)+$\frac{1}{2}$
(3)8÷2×$\frac{1}{2}$(4)3.5÷(-$\frac{4}{15})×(-3\frac{2}{3})$
(5)3×2-(-16)÷4                    
(6)(-$\frac{3}{4}$-$\frac{5}{9}$+$\frac{17}{12}$)×36.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.如图,OC平分∠AOB=60°,且∠AOB=60°,点P为OC上任意点,PM⊥OA于M,PD∥OA,交OB于D,若OM=6,则PD的长为(  )
A.3B.4C.4.5D.5

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.在日常生活中如取款、上网等都需要密码.有一种用“因式分解”法产生密码,方便记忆.
原理是:如对于多项式x4-y4,因式分解的结果是(x-y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(x-y)=0,(x+y)=18,(x2+y2)=162,于是就可以把“018162”作为一个六位数的密码.对于多项式4x3-xy2,取x=10,y=10时,用上述方法产生的密码是:103010(写出一个即可).

查看答案和解析>>

同步练习册答案