【题目】如图,在平面直角坐标系中,已知矩形AOBC的顶点C的坐标是(2,4),动点P从点A出发,沿线段AO向终点O运动,同时动点Q从点B出发,沿线段BC向终点C运动.点P、Q的运动速度均为每秒1个单位,设运动时间为t秒,过点P作PE⊥AO交AB于点E.
(1)求直线AB的解析式;
(2)在动点P、Q运动的过程中,以B、Q、E为顶点的三角形是直角三角形,直按写出t的值;
(3)设△PEQ的面积为S,求S与时间t的函数关系,并指出自变量t的取值范围.
【答案】(1)y=﹣2x+4(2)2或(3)S=t2﹣t(2<t≤4)
【解析】
(1)依据待定系数法即可求得;
(2)根据直角三角形的性质解答即可;
(3)有两种情况:当0<t<2时,PF=4﹣2t,当2<t≤4时,PF=2t﹣4,然后根据面积公式即可求得;
(1)∵C(2,4),
∴A(0,4),B(2,0),
设直线AB的解析式为y=kx+b,
∴,
解得,
∴直线AB的解析式为y=﹣2x+4.
(2)当以B、Q、E为顶点的三角形是直角三角形时,P、E、Q共线,此时t=2,
当以B、Q、E为顶点的三角形是直角三角形时,EQ⊥BE时,此时t=;
(3)如图2,过点Q作QF⊥y轴于F,
∵PE∥OB,
∴,
∵AP=BQ=t,∴PE=t,AF=CQ=4﹣t,
当0<t<2时,PF=4﹣2t,
∴S=PEPF=×t(4﹣2t)=t﹣t2,
即S=﹣t2+t(0<t<2),
当2<t≤4时,PF=2t﹣4,
∴S=PEPF=×t(2t﹣4)=
科目:初中数学 来源: 题型:
【题目】(1)如图1,在四边形中,,、分别是、的中点,连接并延长,分别与、的延长线交于点、,证明:.
请将证明的过程填写完整:
证明:连接,取的中点,连接、.
是的中点,是的中点,
________,_______,同理:_______,_______,
,,
又,,,.
(2)运用上题方法解决下列问题:
问题一:如图2,在四边形中,与相交于点,,、分别是、的中点,连接,分别交、于点、,请判断的形状,并说明理由;
问题二:如图3,在钝角中,,点在上,、分别是、的中点,连接并延长,与的延长线交于点,连接,若,是直角三角形且,求证:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC 中,点 D 是边 BC 上的点(与 B、C 两点不重合),过点 D作 DE∥AC,DF∥AB,分别交 AB、AC 于 E、F 两点,下列说法正确的是( )
A. 若 AD 平分∠BAC,则四边形 AEDF 是菱形
B. 若 BD=CD,则四边形 AEDF 是菱形
C. 若 AD 垂直平分 BC,则四边形 AEDF 是矩形
D. 若 AD⊥BC,则四边形 AEDF 是矩形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.
小明的思路是:过P作PE∥AB,通过平行线性质来求∠APC.
(1)按小明的思路,易求得∠APC的度数为_____度;
(2)问题迁移:如图2,AB∥CD,点P在射线OM上运动,记∠PAB=α,∠PCD=β,当点P在B、D两点之间运动时,问∠APC与α、β之间有何数量关系?请说明理由;
(3)在(2)的条件下,如果点P在B、D两点外侧运动时(点P与点O、B、D三点不重合),请直接写出∠APC与α、β之间的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读理解:材料一:对于任意的非零实数和正实数,如果满足是整数,则称是的一个“整商系数”, 例如:时 ,则是的一个“整商系数”;时, ,则也是的一个“整商系数”;
结论:一个非零实数有无数个整商系数,其中最小的一个整商系数记为,例如: .
材料二:对于一元二次方程中,两根有如下关系:, 应用:
(1)若实数满足,求的取值范围;
(2)关于的方程的两个根分别为,且满足, 则的值为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在长方形ABCD中,AB=CD=5厘米,AD=BC=4厘米. 动点P从A出发,以1厘米/秒的速度沿A→B运动,到B点停止运动;同时点Q从C点出发,以2厘米/秒的速度沿C→B→A运动,到A点停止运动.设P点运动的时间为t秒(t > 0),当t=____________时,S△ADP=S△BQD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某机动车出发前油箱内有油,行驶若干小时后,途中在加油站加油若干升.油箱中余油量()与行驶时间()之间的函数关系如图所示,根据图回答问题:
(1)机动车行驶后加油,途中加油 升:
(2)根据图形计算,机动车在加油前的行驶中每小时耗油多少升?
(3)如果加油站距目的地还有,车速为,要到达目的地,油箱中的油是否够用?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】AB∥CD,直线a交AB、CD分别于点E、F,点M在EF上,P是直线CD上的一个动点,(点P不与F重合)
(1)当点P在射线FC上移动时,∠FMP+∠FPM =∠AEF成立吗?请说明理由。
(2)当点P在射线FD上移动时,∠FMP+∠FPM与∠AEF有什么关系?并说明你的理由
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com