【题目】完成下列推理说明:
(1)如图1,已知∠1=∠2,∠B=∠C,可推出AB∥CD.理由如下: 因为∠1=∠2(已知),且∠1=∠4()
所以∠2=∠4(等量代换)
所以CE∥BF()
所以∠=∠3()
又因为∠B=∠C(已知)
所以∠3=∠B(等量代换)
所以AB∥CD()
(2)如图2,已知∠B+∠BCD=180°,∠B=∠D.求证:∠E=∠DFE. 证明:∵∠B+∠BCD=180°(已知),
∴AB∥CD ()
∴∠B=()
又∵∠B=∠D(已知),
∴∠=∠(等量代换)
∴AD∥BE()
∴∠E=∠DFE()
【答案】
(1)对顶角相等;同位角相等,两直线平行;C;两直线平行,同位角相等;内错角相等,两直线平行
(2)同旁内角互补,两直线平行;∠DCE;两直线平行,同位角相等;DCE;D;内错角相等,两直线平行;两直线平行,内错角相等
【解析】解:(1)理由:因为∠1=∠2(已知),且∠1=∠4(对顶角相等), 所以∠2=∠4(等量代换),所以CE∥BF(同位角相等,两直线平行),所以∠C=∠3(两直线平行,同位角相等),又因为∠B=∠C(已知),所以∠3=∠B(等量代换),所以AB∥CD(内错角相等,两直线平行);所以答案是:对顶角相等,同位角相等,两直线平行,C,两直线平行,同位角相等,内错角相等,两直线平行;(2)证明:∵∠B+∠BCD=180°(已知),∴AB∥CD (同旁内角互补,两直线平行),∴∠B=∠DCE(两直线平行,同位角相等),又∵∠B=∠D(已知),
∴∠DCE=∠D (等量代换),∴AD∥BE(内错角相等,两直线平行),∴∠E=∠DFE(两直线平行,内错角相等).所以答案是:同旁内角互补,两直线平行,∠DCE,两直线平行,同位角相等,DCE,D,内错角相等,两直线平行,两直线平行,内错角相等.
【考点精析】利用平行线的判定与性质对题目进行判断即可得到答案,需要熟知由角的相等或互补(数量关系)的条件,得到两条直线平行(位置关系)这是平行线的判定;由平行线(位置关系)得到有关角相等或互补(数量关系)的结论是平行线的性质.
科目:初中数学 来源: 题型:
【题目】下列多项式相乘的结果是a2-a-6的是( )
A.(a-2)(a+3) B.(a+2)(a-3) C.(a-6)(a+1) D.(a+6)(a-1)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),其中正确结论的个数是( )
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一辆货车从A地开往B地,一辆小汽车从B地开往A地.同时出发,都匀速行驶,各自到达终点后停止.设货车、小汽车之间的距离为s(千米),货车行驶的时间为t(小时),S与t之间的函数关系如图所示.下列说法中正确的有( )
①A、B两地相距60千米;
②出发1小时,货车与小汽车相遇;
③小汽车的速度是货车速度的2倍;
④出发1.5小时,小汽车比货车多行驶了60千米.
A.1个 B.2个 C.3个 D.4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com