精英家教网 > 初中数学 > 题目详情
如图1,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”.我们可得出一种计算三角形面积的新方法:,即三角形面积等于水平宽与铅垂高乘积的一半.

解答下列问题:
如图2,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.
(1)求抛物线和直线AB的解析式;
(2)点P是抛物线(在第一象限内)上的一个动点,连结PAPB,当P点运动到顶点C时,求△CAB的铅垂高CD
  (3)是否存在一点P,使SPAB=SCAB,若存在,求出P点的坐标;若不存在,请说明理由.

(1)设抛物线的解析式为:
A(3,0)代入解析式求得
所以
设直线AB的解析式为:
求得B点的坐标为 
代入
解得:
所以解析:
p;【解析】略
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

精英家教网阅读材料:
如图1,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”.我们可得出一种计算三角形面积的新方法:
S△ABC=
1
2
ah,即三角形面积等于水平宽与铅垂高乘积的一半.
解答下列问题:
如图2,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.
(1)求抛物线和直线AB的解析式;
(2)点P是抛物线(在第一象限内)上的一个动点,连接PA,PB,当P点运动到顶点C时,求△CAB的铅垂高CD及S△CAB
(3)是否存在抛物线上一点P,使S△PAB=
9
8
S△CAB?若存在,求出P点的坐标;若精英家教网不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

精英家教网阅读材料:如图1,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高”(h).我们可得出一种计算三角形面积的新方法:S△ABC=
12
ah,即三角形面积等于水平宽与铅垂高乘积的一半.
解答下列问题:
如图2,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),点P是抛物线(在第一象限内)上的一个动点.
(1)求抛物线的解析式;
(2)若点B为抛物线与y轴的交点,求直线AB的解析式;
(3)在(2)的条件下,设抛物线的对称轴分别交AB、x轴于点D、M,连接PA、PB,当P点运动到顶点C时,求△CAB的铅垂高CD及S△CAB
(4)在(2)的条件下,设P点的横坐标为x,△PAB的铅垂高为h、面积为S,请分别写出h和S关于x的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

精英家教网阅读材料:
如图1,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”.我们可得出一种计算三角形面积的新方法:S△ABC=
12
ah
,即三角形面积等于水平宽与铅垂高乘积的一半.
解答下列问题:精英家教网
如图2,抛物线顶点坐标为点C(-1,-4),交x轴于点A(-3,0),交y轴于点B.
(1)求抛物线和直线AB的解析式;
(2)点P是抛物线(在第三象限内)上的一个动点,连接PA,PB,当P点运动到顶点C时,求△CAB的铅垂高CD及S△CAB
(3)是否存在一点P,使S△PAB=S△CAB,若存在,求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•龙岩)如图1,过△ABC的顶点A作高AD,将点A折叠到点D(如图2),这时EF为折痕,且△BED和△CFD都是等腰三角形,再将△BED和△CFD沿它们各自的对称轴EH、FG折叠,使B、C两点都与点D重合,得到一个矩形EFGH(如图3),我们称矩形EFGH为△ABC的边BC上的折合矩形.
(1)若△ABC的面积为6,则折合矩形EFGH的面积为
3
3

(2)如图4,已知△ABC,在图4中画出△ABC的边BC上的折合矩形EFGH;
(3)如果△ABC的边BC上的折合矩形EFGH是正方形,且BC=2a,那么,BC边上的高AD=
2a
2a
,正方形EFGH的对角线长为
2
a
2
a

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读材料:
如图1,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高”(h).我们可得出一种计算三角形面积的新方法:S△ABC=ah,即三角形面积等于水平宽与铅垂高乘积的一半.

解答下列问题:
如图2,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),点P是抛物线(在第一象限内)上的一个动点.
(1)求抛物线的解析式;
(2)若点B为抛物线与y轴的交点,求直线AB的解析式;
(3)设点P是抛物线(第一象限内)上的一个动点,是否存在一点P,使S△PAB=S△CAB?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案