精英家教网 > 初中数学 > 题目详情
2.如图所示的正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:
(1)以A点为旋转中心,将△ABC绕点A顺时针旋转90°得△AB1C1,画出△AB1C1
(2)作出△ABC关于坐标原点O成中心对称的△A2B2C2
(3)作出点C关于x轴的对称点P.若点P向右平移x个单位长度后落在△A2B2C2的内部(不含落在△A2B2C2的边上),请直接写出x的取值范围.
(提醒:每个小正方形边长为1个单位长度)

分析 (1)利用网格特点和旋转的性质画出点B、C的对应点B1、C1,则可得到△AB1C1
(2)根据关于原点对称的点的坐标特征写出点A2、B2、C2的坐标,然后描点即可得到△A2B2C2
(3)先利用关于x轴的对称点的坐标特征写出P点坐标,再描点得到P点,然后观察图形可判断x的取值范围.

解答 解:(1)如图,△AB1C1为所作;
(2)如图,△A2B2C2.为所作;

(3)如图,点P为所作;x的取值范围为5.5<x<8.

点评 本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

20.已知,在菱形OABC中,∠OAB=60°,OC=2.若以O为坐标原点,OC所在直线为x轴,建立如图所示的平面直角坐标系,点B在第四象限内.将菱形OABC沿直线OA折叠后,点C落在点E处,点B落在点D出.
(1)求点D和E的坐标;
(2)若抛物线y=ax2+bx+c(a≠0)经过C、D、E点,求抛物线的解析式;
(3)如备用图所示,已知在平面内存在点P到直线AC,CE,EA的距离相等,试求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.已知在平行四边形ABCD中,AB=15、AC=13,BC边上的高是12,则平行四边形ABCD的周长等于58或38.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.为了防控甲型H1N1流感,某校积极进行校园的环境消毒,为此购买了甲、乙两种消毒液,现已知过去两次购买这两种消毒液的瓶数和总费用如表所示:
甲种消毒液(瓶)乙种消毒液(瓶)总费用(元)
第一次4060660
第二次8030690
(1)求每瓶甲种消毒和每瓶乙种消毒液各多少元?
(2)现在学校决定购买甲乙两种消毒液共300瓶,要求甲乙两种的数量都不少于100瓶,并且甲的数量不少于乙数量的$\frac{3}{2}$,请你帮助学校计算购买时最低费用为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.问题情境:
如图1,已知△ABC和△DCE中,∠ACB=∠DCE=90°,AC=BC=$\sqrt{2}$,CD=CE=1,点D在AC边上,点E在BC延长线上,将△DCE从此位置开始绕C点顺时针旋转,旋转角是α(0°<α<180°)
操作发现:
(1)如图2,当旋转角α=45°时,连接AD.求证:四边形ACED是平行四边形;
 (2)如图3,当°<α<90°时,连接BD,AE,判断线段BD与AE的数量关系,并说明理由;
解决问题:
(3)如图3,当0°<α<180°时,连接AD,点F,G,H分别是线段AB,AD,DE的中点,连接FG,GH,FH,在△CDE旋转的过程中,AE与BD的数量关系是AE=BD.所以△FGH始终是一个特殊三角形,当旋转角α=135°时,△FGH的面积是$\frac{5}{8}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.如图1所示的是一个长方形纸带,∠DEF=25°,将纸带沿EF折叠成图2,则图2中的∠BGE的度数是50°.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.购买一种水果,所付款金额(元)与购买数量(千克)之间的函数图象由线段OA和射线AB组成,如图所示,则一次购买20千克这种水果,比分两次每次购买10千克这种水果可以节省的费用为(  )
A.20元B.12元C.10元D.8元

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,平行四边形中,AE⊥BC于E,AF⊥CD于F.
(1)若∠EAF=65°,求∠BAD的度数;
(2)若AE=3cm,BC=5cm,CD=4cm,求AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.正多边形的一个内角的度数恰好等于它的外角的度数的4倍,则这个正多边形的边数为10.

查看答案和解析>>

同步练习册答案