精英家教网 > 初中数学 > 题目详情

【题目】如图:已知∠B=∠BGD,∠DGF=∠F,求证:∠B+∠F180°.

请你认真完成下面的填空.

证明:∵∠B=∠BGD ( 已知 )

ABCD   

∵∠DGF=∠F;( 已知 )

CDEF   

ABEF   

∴∠B+∠F180°(    ).

【答案】内错角相等,两直线平行;内错角相等,两直线平行;平行于同一条直线的两条直线平行;两直线平行,同旁内角互补.

【解析】

观察图形,由∠B=∠BGD,根据内错角相等,两直线平行,即可证得ABCD,又由∠DGF=F,根据内错角相等,两直线平行,可证得CDEF,由平行于同一条直线的两条直线平行,则得ABEF,再根据两直线平行 同旁内角互补,易得∠B+∠F180°

证明:∵∠B=∠BGD(已知),

ABCD(内错角相等,两直线平行),

∵∠DGF=∠F(已知),

CDEF(内错角相等,两直线平行),

ABEF(平行于同一条直线的两条直线平行)

∴∠B+∠F180°(两直线平行,同旁内角互补);

故答案为:内错角相等,两直线平行;内错角相等,两直线平行;平行于同一条直线的两条直线平行;两直线平行,同旁内角互补.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】综合探究:如图1,在平面直角坐标系xOy中,抛物线y=﹣+bx+8与x轴交于点A(﹣6,0)和点B(点A在点B左侧),与y轴交于点C,点P为线段AO上的一个动点,过点P作x轴的垂线l与抛物线交于点E,连接AE、EC.

(1)求抛物线的表达式及点C的坐标;

(2)连接AC交直线l于点D,则在点P运动过程中,当点D为EP中点时,SADP:SCDE=   

(3)如图2,当ECx轴时,点P停止运动,此时,在抛物线上是否存在点G,使得以点A、E、G为顶点的三角形是直角三角形?若存在,请求出点G的坐标,若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】今有善行者行一百步,不善行者行六十步(出自《九章算术》)意思是:同样时间段内,走路快的人能走100步,走路慢的人只能走60步,假定两者步长相等,据此回答以下问题:

1)今不善行者先行一百步,善行者追之,不善行者再行六百步,问孰至于前,两者几何步隔之?即:走路慢的人先走100步,走路快的人开始追赶,当走路慢的人再走600步时,请问谁在前面,两人相隔多少步?

2)今不善行者先行两百步,善行者追之,问几何步及之?即:走路慢的人先走200步,请问走路快的人走多少步才能追上走路慢的人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)的图象经过点A(3,0),B(2,﹣3),并且以x=1为对称轴.

(1)求此函数的解析式;

(2)作出二次函数的大致图象

(3)在对称轴x=1上是否存在一点P,使△PABPA=PB?若存在,求出P点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解下列方程或方程组

12x1x+9

2x+52x1

3

4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,D△ABC内一点,CD平分∠ACBBDCD,∠A=∠ABD,若AC5BC3,则CD的长是_______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】设中学生体质健康综合评定成绩为x分,满分为100分,规定:85≤x≤100A级,75≤x≤85B级,60≤x≤75C级,x60D级.现随机抽取福海中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:

1)在这次调查中,一共抽取了 名学生,α= %

2)补全条形统计图;

3)扇形统计图中C级对应的圆心角为 度;

4)若该校共有2000名学生,请你估计该校D级学生有多少名?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A.C的坐标分别为A(1O,0),C(0,4),点D是OA的中点,点P在BC边上运动。当△ODP是腰长为5的等腰三角形时,则点P的坐标是______________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:

(1)8+(-)-5-(-0.25); (2)|-|÷()×(-4)2

(3)()×(-30); (4)(-1)3-(13×[2-(-3)2].

查看答案和解析>>

同步练习册答案