精英家教网 > 初中数学 > 题目详情
如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.解答下列问题:
(1)如果AB=AC,∠BAC=90°,
①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为______,数量关系为______.
②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么?
(2)如果AB≠AC,∠BAC≠90°点D在线段BC上运动.试探究:当△ABC满足一个什么条件时,CF⊥BC(点C、F重合除外)?并说明理由.
(1)①CF⊥BD,CF=BD…(2分)
故答案为:垂直、相等.
②成立,理由如下:…(3分)
∵∠FAD=∠BAC=90°
∴∠BAD=∠CAF
在△BAD与△CAF中,
BA=CA
∠BAD=∠CAF
AD=AF

∴△BAD≌△CAF(SAS)(5分)
∴CF=BD,∠ACF=∠ACB=45°,
∴∠BCF=90°
∴CF⊥BD…(7分)

(2)当∠ACB=45°时可得CF⊥BC,理由如下:…(8分)
过点A作AC的垂线与CB所在直线交于G…(9分)
则∵∠ACB=45°
∴AG=AC,∠AGC=∠ACG=45°
∵AG=AC,AD=AF,
∵∠GAD=∠GAC-∠DAC=90°-∠DAC,∠FAC=∠FAD-∠DAC=90°-∠DAC,
∴∠GAD=∠FAC,
∴△GAD≌△CAF(SAS)…(10分)
∴∠ACF=∠AGD=45°
∴∠GCF=∠GCA+∠ACF=90°
∴CF⊥BC…(12分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

如图,两个边长都是2的正方形,其中正方形OPQR的顶点O是正方形ABCD的中心,有以下结论:
①四边形OECF的面积=1;②EC+CF=2;③EO+OF=2;④四边形OECF的周长=4,
则以上结论正确的是(  )
A.①②③④B.①②C.①③D.①④

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在△ABC中,AD⊥BC于点D,∠BAC=45°,BD=3,DC=2,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,四边形ABCD为正方形,△BEF为等腰直角三角形(∠BFE=90°,点B、E、F按逆时针顺序),P为DE的中点,连接PC、PF.
(1)如图(1),E点在边BC上,则线段PC、PF的数量关系为______,位置关系为______(不需要证明).
(2)如图(2),将△BEF绕B点顺时针旋转α°(0<α<45),则线段PC、PF有何数量关系和位置关系?请写出你的结论并证明.
(3)如图(3),E点旋转到图中的位置,其它条件不变,完成图(3),则线段PC、PF有何数量关系和位置关系?直接写出你的结论,不需要证明.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

请在6×6的正方形网格中,各画出一个不同类型的特殊平行四边形,并分别求出所画特殊平行四边形的面积.
(1)图1:AB为特殊平行四边形的一条边;
(2)图2:AB为特殊平行四边形的一条对角线.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在正方形ABCD中,O是对角线AC、BD的交点,过O作OE⊥OF,分别交AB、BC于E、F,若AE=4,CF=3,则EF的长为(  )
A.7B.5C.4D.3

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,两个边长相等的正方形ABCD和OEFG,若将正方形OEFG绕点O按逆时针方向旋转150°,则两个正方形的重叠部分四边形OMCN的面积(  )
A.不变B.先增大再减小
C.先减小再增大D.不断增大

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,正方形ABCD中,E是AD的中点,BM⊥CE,AB=6,则BM=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

将正方形ABCD(如图1)分割成四块,再拼成的矩形BDFH(如图2).

(1)这两个图形的面积显然不等,请你计算矩形BDFH与正方形ABCD的面积的差;
(2)为什么这两个图形的面积不等呢?通过观察发现,所拼成的矩形BDFH中,沿对角线方向有一条细小的缝隙.请你用学过的数学知识解释这条缝隙产生的原因.

查看答案和解析>>

同步练习册答案