精英家教网 > 初中数学 > 题目详情

【题目】小李的活鱼批发店以44/公斤的价格从港口买进一批2000公斤的某品种活鱼,在运输过程中,有部分鱼未能存活,小李对运到的鱼进行随机抽查,结果如表一.由于市场调节,该品种活鱼的售价与日销售量之间有一定的变化规律,表二是近一段时间该批发店的销售记录.

(1)请估计运到的2000公斤鱼中活鱼的总重量;(直接写出答案)

(2)按此市场调节的观律,

①若该品种活鱼的售价定为52.5/公斤,请估计日销售量,并说明理由;

②考虑到该批发店的储存条件,小李打算8天内卖完这批鱼(只卖活鱼),且售价保持不变,求该批发店每日卖鱼可能达到的最大利润,并说明理由.

【答案】(1) 估计运到的2000公斤鱼中活鱼的总重量为1760公斤;(2) ①可以估计当活鱼的售价定为52.5/公斤时,日销售量为300公斤②售价定为54.5/公斤,每日卖鱼可能达到的最大利润为990.

【解析】

(1)用总质量乘以0.880可得;
(2)①由表知,售价每增加1元,日销售量就减少40公斤,据此求解可得;
②由售价每增加x元/公斤,可估计日销售量在400公斤的基础上减少40x公斤,设批发店每日卖鱼的利润为w,根据总利润=每公斤的利润×销售量列出函数解析式,在根据题意求出增加的单价的取值范围,利用二次函数的性质求解可得.

(1) 估计运到的2000公斤鱼中活鱼的总重量为1760公斤;

(2) 根据表二的销售记录可知,活鱼的售价每增加1元,其日销售量就减少40公斤,所以按此变化规律可以估计当活鱼的售价定为52.5元/公斤时,日销售量为300公斤;

由(2) ,若活鱼售价在50元/公斤的基础上,售价增加元/公斤,则可估计日销售量在400公斤的基础上减少40公斤,

设批发店每日卖鱼的最大利润为

由题得

由“在8天内卖完这批活鱼”,可得,解得.根据实际意义,有;解得.

所以

因为,

所以当时,的增大而增大,

所以售价定为54.5元/公斤,每日卖鱼可能达到的最大利润为990元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣51),B(﹣22),C(﹣14),请按下列要求画图:

1)将△ABC先向右平移4个单位长度、再向下平移1个单位长度,得到△A1B1C1,画出△A1B1C1

2)画出与△ABC关于原点O成中心对称的△A2B2C2,并直接写出点A2的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知在△ABC中,AB=AC,∠BAC=α直线l经过点A(不经过点B或点C),点C关于直线l的对称点为点D,连接BDCD

(1)如图1,

求证:点在以点为圆心,为半径的圆上.

直接写出BDC的度数(用含α的式子表示)为___________.

(2)如图2,当α=60°时,过点DBD的垂线与直线l交于点E求证:AE=BD

1 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则以下结论同时成立的是  

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们把三边长的比为3:4:5的三角形称为完全三角形,记命题A:“完全三角形是直角三角形”.若命题B是命题A的逆命题,请写出命题B:______________________并写出一个例子(该例子能判断命题B是错误的)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个不透明的盒子中,装有3个分别写有数字6﹣27的小球,他们的形状、大小、质地完全相同,搅拌均匀后,先从盒子里随机抽取1个小球,记下小球上的数字后放回盒子,搅拌均匀后再随机取出1个小球,再记下小球上的数字.

1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出所有可能出现的结果;

2)求两次取出的小球上的数字相同的概率P

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为(  )

A. B. 2 C. 2 D. 8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,O为原点,点A(﹣,0),点B(0,1)把△ABO绕点O顺时针旋转,得△A'B'O,点AB旋转后的对应点为A',B',记旋转角为α(0°<α<360°).

(1)如图①,当点A′,BB′共线时,求AA′的长.

(2)如图②,当α=90°,求直线ABAB′的交点C的坐标;

(3)当点A′在直线AB上时,求BB′与OA′的交点D的坐标(直接写出结果即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程x2+(k﹣5)x+1﹣k=0(其中k为常数).

(1)求证无论k为何值,方程总有两个不相等实数根;

(2)已知函数y=x2+(k﹣5)x+1﹣k的图象不经过第三象限,求k的取值范围;

(3)若原方程的一个根大于3,另一个根小于3,求k的最大整数值.

查看答案和解析>>

同步练习册答案