分析 (1)由于△ABC是等边三角形,易知∠A=60°,∠ACF=120°;而CE平分∠ACF,可得∠A=∠DCE=60°,又已知了一组对顶角,两组对应角相等,可判定所求的两个三角形相似;
(2)由相似三角形的对应边成比例,即可求得CE的长.
解答 (1)证明:∵△ABC是等边三角形,
∴∠BAC=∠ACB=60°,∠ACF=120°;
∵CE是外角平分线,
∴∠ACE=60°;
∴∠BAC=∠ACE;
又∵∠ADB=∠CDE,
∴△ABD∽△CED;
(2)解:∵△ABD∽△CED,
∴$\frac{AB}{CE}=\frac{AD}{CD}$,
∵AD=2DC,
∴AB=2CE,
∴CE=$\frac{1}{2}$AB=5.
点评 此题考查了相似三角形的判定与性质与等边三角形的性质,以及角平分线的定义.注意掌握有两角对应相等的三角形相似与相似三角形的对应边成比例是解此题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com