精英家教网 > 初中数学 > 题目详情
如图,在高为60米的楼顶B处,安装一块广告牌BC,小明用仪器在点P处测得楼顶B的仰角为α,广告牌顶端的仰角为β,其中tanα=
3
4
,tanβ=
4
5
,求广告牌的高度BC.
考点:解直角三角形的应用-仰角俯角问题
专题:
分析:设BC的高度为x米,则AC=AB+BC=(x+60)米,再由已知条件tanα=
3
4
,tanβ=
4
5
,建立关于x的方程,解方程即可得到x的值,即广告牌的高度.
解答:解:设BC的高度为x米,则AC=AB+BC=(x+60)米,
∵tanα=
3
4

AB
PA
=
3
4

∵AB=60米,
∴PA=80米,
∵tanβ=
4
5

AC
PA
=
4
5

x+60
80
=
4
5

解得:x=4.
答:广告牌的高度BC是4米.
点评:本题考查仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

先化简再求值:x-3(1-2x+x2)+2(-2+3x-x2),其中x=2.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知:A、F、C、D四点在一条直线上,AF=CD,DE∥AB,且AB=DE.求证:EF∥CB.

查看答案和解析>>

科目:初中数学 来源: 题型:

若(2,y1),(5,y2)是抛物线y=-(x-1)2+2上的两点,则y1
 
y2(填“<”“=”或“>”)

查看答案和解析>>

科目:初中数学 来源: 题型:

点M在△ABC的BC的边上,把以点M为圆心的⊙M称之为△ABC的伴随圆.在△ABC中,∠BAC=90°,AB=4,AC=8,M是BC边的中点.
(1)如图1,当MN⊥BC交AC于点N时,求线段MN的长;
(2)如图2,当△ABC的伴随圆⊙M与△ABC一边相切时,求出他们重叠部分的面积;
(3)如图3,设伴随圆⊙M的半径为R,请直接写出△ABC的边与⊙M的公共点个数所有可能的情况,并写出相应的R的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

直线l经过点D(
4
3
,0),与二次函数y=
1
2
x2相交于点A,B,连接AO,BO,三角形AOB的外接圆圆心在线段AB上,试求外接圆的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

若反比例函数y=
2
x
与一次函数y=x-3的图象的交点坐标(a,b),则式子
1
a
-
1
b
的值为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

以下四个图中对称轴条数最多的一个图形是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:初中数学 来源: 题型:

计算:sin230•sin245°-cos60°+tan60°•cos230°.

查看答案和解析>>

同步练习册答案