精英家教网 > 初中数学 > 题目详情

如图,已知直角坐标系中一条圆弧经过正方形网格的格点A、B、C.
(1)用直尺和圆规画出该圆弧所在圆的圆心M的位置(不用写作法,保留作图痕迹).
(2)若A点的坐标为(0,4),D点的坐标为(7,0),直线CD与⊙M的位置关系为______,再连接MA、MC,将扇形AMC卷成一个圆锥,求此圆锥的侧面积.

解:(1)正确找到圆心.

(2)相切
连接MA,
∵OA=ME=4,OM=CE=2,∠AOM=∠MEC=90°,
∴△AOM≌△MEC,∴∠AMO=∠MCE,
又∵∠CME+∠MCE=90°,∠AMO+∠CME=90°
∴∠AMC=90°
∴AM⊥MC     
又∵MA=MC=2  
∴弧AC的长=x
设扇形AMC卷成的圆锥的半径为r,则r=
∴扇形AMC卷成的圆锥的侧面积=5π.
分析:(1)根据垂径定理得出圆心;
(2)连接MA,可证明△AOM≌△MEC,则∠AMO=∠MCE,从而得出∠AMC=90°,即AM⊥MC,由MA=MC=2,由弧长公式扇形AMC卷成的圆锥的半径为r.
点评:本题考查了圆锥的计算、全等三角形的判定和性质、垂径定理以及直线和圆的位置关系,是一道综合题,难度偏大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知直角坐标系中一条圆弧经过正方形网格的格点A、B、C.
(1)用直尺和圆规画出该圆弧所在圆的圆心M的位置(不用写作法,保留作图痕迹).
(2)若A点的坐标为(0,4),D点的坐标为(7,0),求证:直线CD是⊙M的切线.
(3)在(2)的条件下,连接MA、MC,将扇形AMC卷成一个圆锥,求此圆锥的高.

查看答案和解析>>

科目:初中数学 来源: 题型:

12、如图,已知直角坐标系中的点A、B的坐标分别为A(2,4)、B(4,0),且P为AB的中点.若将线段AB向右平移3个单位后,与点P对应的点为Q,则点Q的坐标是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

7、如图,已知直角坐标系中一条圆弧经过正方形网格的格点A,B,C.若A点的坐标为(0,4),D点的坐标为(7,0),那么圆心M点的坐标(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知直角坐标系中四点A(-2,4),B(-2,0),C(2,-3),D(2,0)、设P是x轴上的点,且PA、PB、AB所围成的三角形与PC、PD、CD所围成的三角形相似,请写出所有符合上述条件的点P的坐标:
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知直角坐标系中一条圆弧经过正方形网格的格点A、B、C.用直尺和圆规画出该圆弧所在圆的圆心M的位置(不用写作法,保留作图痕迹).

查看答案和解析>>

同步练习册答案