精英家教网 > 初中数学 > 题目详情

【题目】如图,在坡角为30°的山坡上有一铁塔AB,其正前方矗立着一大型广告牌,当阳光与水平线成45°角时,测得铁塔AB落在斜坡上的影子BD的长为6米,落在广告牌上的影子CD的长为4米,求铁塔AB的高(AB,CD均与水平面垂直,结果保留根号).

【答案】解:过点C作CE⊥AB于E,过点B作BF⊥CD于F,

在Rt△BFD中,
∵∠DBF=30°,sin∠DBF= = ,cos∠DBF= =
∵BD=6,
∴DF=3,BF=3
∵AB∥CD,CE⊥AB,BF⊥CD,
∴四边形BFCE为矩形,
∴BF=CE=3 ,CF=BE=CD﹣DF=1,
在Rt△ACE中,∠ACE=45°,
∴AE=CE=3
∴AB=3 +1.
答:铁塔AB的高为(3 +1)m.
【解析】过点C作CE⊥AB于E,过点B作BF⊥CD于F,在Rt△BFD中,分别求出DF、BF的长度,在Rt△ACE中,求出AE、CE的长度,继而可求得AB的长度.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知函数f(x)= sin(2x+φ)+cos(2x+φ)为偶函数,且在[0, ]上是增函数,则φ的一个可能值为(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=kx+b经过点A(﹣5,0),B(﹣1,4).

(1)求直线AB的表达式;

(2)若直线y=﹣2x﹣4与直线AB相交于点C,求点C的坐标;

(3)根据图象,写出关于x的不等式kx+b>﹣2x﹣4的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一条笔直的公路的同侧依次排列着A,C,B三个村庄,某天甲、乙两车分别从A,B两地出发,沿这条公路匀速行驶至C地停止,从甲车出发至甲车到达C地的过程,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图所示.求:
(1)甲的速度是 , 乙的速度是
(2)分别求出甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系式,并写出取值范围;
(3)若甲、乙两车到C地后继续沿该公路原速度行驶,求甲车出发多少小时,两车相距350km.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,中线BE,CD相交于点O,连接DE,下列结论: ① = ;② = ;③ ;④ =
其中正确的个数有(

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,把∠α=60°的一个单独的菱形称作一个基本图形,将此基本图形不断的复制并平移,使得下一个菱形的一个顶点与前一个菱形的中线重合,这样得到图②,图③,…
(1)观察以上图形并完成下表:

图形名称

基本图形的个数

菱形的个数

图①

1

1

图②

2

3

图③

3

7

图④

4

猜想:在图(n)中,菱形的个数为(用含有n(n≥3)的代数式表示);
(2)如图,将图(n)放在直角坐标系中,设其中第一个基本图的对称中心O1的坐标为(x1 , 1),则x1=;第2017个基本图形的中心O2017的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一个函数图象经过(1,﹣4),(2,﹣2)两点,在自变量x的某个取值范围内,都有函数值y随x的增大而减小,则符合上述条件的函数可能是(
A.正比例函数
B.一次函数
C.反比例函数
D.二次函数

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,O为原点,点A(﹣2,0),点B(0,2),点E,点F分别为OA,OB的中点.若正方形OEDF绕点O顺时针旋转,得正方形OE′D′F′,记旋转角为α.
(Ⅰ)如图①,当α=90°时,求AE′,BF′的长;
(Ⅱ)如图②,当α=135°时,求证AE′=BF′,且AE′⊥BF′;
(Ⅲ)若直线AE′与直线BF′相交于点P,求点P的纵坐标的最大值(直接写出结果即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y1=ax2﹣4ax+3(a≠0)与y轴交于点A,A、B两点关于对称轴对称,直线OB分别与抛物线的对称轴相交于点C.
(1)直接写出对称轴及B点的坐标;
(2)已知直线y2=bx﹣4b+3(b≠0)与抛物线的对称轴相交于点D. ①判断直线y2=bx﹣4b+3(b≠0)是否经过点B,并说明理由;
②若△BDC的面积为1,求b的值.

查看答案和解析>>

同步练习册答案