精英家教网 > 初中数学 > 题目详情

【题目】如图,在直角梯形OABC中,BC∥AO,∠AOC=90°,点A,B的坐标分别为(5,0),(2,6),点D为AB上一点,且BD=2AD,双曲线y= (k>0)经过点D,交BC于点E.

(1)求双曲线的解析式;
(2)求四边形ODBE的面积.

【答案】
(1)

解:作BM⊥x轴于M,作DN⊥x轴于N,如图,

∵点A,B的坐标分别为(5,0),(2,6),

∴BC=OM=2,BM=OC=6,AM=3,

∵DN∥BM,

∴△ADN∽△ABM,

,即

∴DN=2,AN=1,

∴ON=OA﹣AN=4,

∴D点坐标为(4,2),

把D(4,2)代入y= 得k=2×4=8,

∴反比例函数解析式为y=


(2)

解:S四边形ODBE=S梯形OABC﹣SOCE﹣SOAD

= ×(2+5)×6﹣ ×|8|﹣ ×5×2

=12.


【解析】(1)作BM⊥x轴于M,作DN⊥x轴于N,利用点A,B的坐标得到BC=OM=2,BM=OC=6,AM=3,再证明△ADN∽△ABM,利用相似比可计算出DN=2,AN=1,则ON=OA﹣AN=4,得到D点坐标为(4,2),然后把D点坐标代入y= 中求出k的值即可得到反比例函数解析式;(2)根据反比例函数k的几何意义和S四边形ODBE=S梯形OABC﹣SOCE﹣SOAD进行计算.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】张家界到长沙的距离约为320km,小明开着大货车,小华开着小轿车,都从张家界同时去长沙,已知小轿车的速度是大货车的1.25倍,小华比小明提前1小时到达长沙.试问:大货车和小轿车的速度各是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某批发市场有中招考试文具套装,其中A品牌的批发价是每套20元,B品牌的批发价是每套25元,小王需购买A、B两种品牌的文具套装共1000套.
(1)若小王按需购买A、B两种品牌文具套装共用22000元,则各购买多少套?
(2)凭会员卡在此批发市场购买商品可以获得8折优惠,会员卡费用为500元.若小王购买会员卡并用此卡按需购买1000套文具套装,共用了y元,设A品牌文具套装买了x包,请求出y与x之间的函数关系式.
(3)若小王购买会员卡并用此卡按需购买1000套文具套装,共用了20000元,他计划在网店包邮销售这两种文具套装,每套文具套装小王需支付邮费8元,若A品牌每套销售价格比B品牌少5元,请你帮他计算,A品牌的文具套装每套定价不低于多少元时才不亏本(运算结果取整数)?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,CD是⊙O的直径,且CD=2cm,点P为CD的延长线上一点,过点P作⊙O的切线PA,PB,切点分别为点A,B.
(1)连接AC,若∠APO=30°,试证明△ACP是等腰三角形;
(2)填空: ①当DP=cm时,四边形AOBD是菱形;
②当DP=cm时,四边形AOBP是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两名射击运动员中进行射击比赛,两人在相同条件下各射击10次,射击的成绩如图所示.

根据图中信息,回答下列问题:

(1)甲的平均数是___________,乙的中位数是______________;

(2)分别计算甲、乙成绩的方差,并从计算结果来分析,你认为哪位运动员的射击成绩更稳定?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),B(5,0)两点,直线y=﹣ x+3与y轴交于点C,与x轴交于点D.点P是x轴上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m.

(1)求抛物线的解析式;
(2)若PE=5EF,求m的值;
(3)若点E′是点E关于直线PC的对称点,是否存在点P,使点E′落在y轴上?若存在,请直接写出相应的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知下列方程,属于一元一次方程的有(  )

①x﹣2=;②0.5x=1;③=8x﹣1;④x2﹣4x=8;⑤x=0;⑥x+2y=0.

A. 5 B. 4 C. 3 D. 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知∠AOB是∠AOC的余角,AOD是∠AOC的补角,且∠BOD=2BOC,求∠BOD、AOC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】折叠三角形纸片ABC,使点A落在BC边上的点F,且折痕DEBC,若∠A=75°,C=60°,则∠BDF=____________________________

查看答案和解析>>

同步练习册答案