精英家教网 > 初中数学 > 题目详情
20.下列条件中,不能判定三角形全等的是(  )
A.三条边对应相等B.两边和其中一角对应相等
C.两边和夹角对应相等D.两角和它们的夹边对应相等

分析 根据全等三角形的判定定理逐个判断即可.

解答 解:A、符合全等三角形的判定定理SSS,能推出两三角形全等,故本选项不符合题意;
B、不符合全等三角形的判定定理,不能推出两三角形全等,故本选项符合题意;
C、符合全等三角形的判定定理SAS,能推出两三角形全等,故本选项不符合题意;
D、符合全等三角形的判定定理ASA,能推出两三角形全等,故本选项不符合;
故选B.

点评 本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

1.已知非零向量$\overrightarrow{a}$与$\overrightarrow{b}$,那么下列说法正确的是(  )
A.如果|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,那么$\overrightarrow{a}$=$\overrightarrow{b}$B.如果|$\overrightarrow{a}$|=|-$\overrightarrow{b}$|,那么$\overrightarrow{a}$∥$\overrightarrow{b}$
C.如果$\overrightarrow{a}$∥$\overrightarrow{b}$,那么|$\overrightarrow{a}$|=|$\overrightarrow{b}$|D.如果$\overrightarrow{a}$=-$\overrightarrow{b}$,那么|$\overrightarrow{a}$|=|$\overrightarrow{b}$|

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.已知:如图,点A、B、C在同一直线上,AC=BD,AE∥CF,且AE=CF.求证:∠E=∠F.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.在平面直角坐标系中,过格点A、B、C作一圆弧.
(1)弧AC的长为$\frac{\sqrt{5}}{2}$π(结果保留π);
(2)点B与图中格点的连线中,能够与该圆弧相切的连线所对应的格点的坐标为(5,1)或(1,3)或(7,0).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.如图,己知射线OM与射线ON互相垂直,A是直径PQ为2cm的半圆铁片上一点,且弧AQ的度数为60°,(即弧AQ所对的圆心角为60°)动点P从点O沿射线OM开始滑动,同时动点Q在ON上滑动,当点Q滑至点O停止时,点A所经过的路程是(  )
A.3B.3-$\sqrt{3}$C.3+$\sqrt{3}$D.6-2$\sqrt{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.某水果店用1000元购进甲、乙两种新出产的水果共140kg,这两种水果的进价、售价如表所示:
进价(元/kg)售价(元/kg)
甲种58
乙种913
(1)这两种水果各购进多少千克?
(2)若该水果店按售价售完这批水果,获得的利润是多少元?
(3)如果这批水果是在一天之内按照售价销售完成的,除了进货成本,水果店每天的其它销售费用是0.1元/kg,那么水果店销售这批水果获得的利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.计算:(-$\frac{3}{2}$)2÷(-$\frac{1}{2}$)2×(1$\frac{1}{3}$)2-(-4)2-42

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,有一块四边形形状的铁皮ABCD,BC=CD=6,AB=2AD,∠ABC=∠ADB=90°,以C为圆心,CB为半径作弧BD得一扇形CBD,剪下扇形并用它围成一圆锥的侧面.
求:(1)∠BCD的度数;
(2)该圆锥的底面半径.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,在平面直角坐标系中,△ABC中的三个顶点坐标分别为A(1,4)、B(-1,2)、C(3,3).在x轴上方,请画出以原点O为位似中心,相似比为2:1.将△ABC放大后得到的△A1B1C1,并写出△A1B1C1各顶点的坐标.

查看答案和解析>>

同步练习册答案