精英家教网 > 初中数学 > 题目详情
过△ABC的顶点C作边AB的垂线,如果这条垂线与∠ACB的两边所夹的角的度数分别是45°和50°,那么∠ACB等于
5°或95°
5°或95°
分析:分类讨论:当过顶点C的垂线在△ABC的内部,∠ACB的度数等于这条垂线与∠ACB的两边所夹的角的度数之和;当过顶点C的垂线在△ABC的外部,∠ACB的度数等于这条垂线与∠ACB的两边所夹的角的度数之差.
解答:解:当过顶点C的垂线在△ABC的内部,则∠ACB=50°+45°=95°;
当过顶点C的垂线在△ABC的外部,则∠ACB=50°-45°=5°.
故答案为5°或95°.
点评:本题考查了角的计算:会进行角的和、差、倍、分计算以及度、分、秒的换算.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,过△ABC的顶点A作AF⊥AB,且AF=AB,再作AH⊥AC,且AH=AC,BH交AC于E,CF交AB于D,BH与CF相交于点O.
求证:(1)HB=CF;(2)HB⊥CF.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•龙岩)如图1,过△ABC的顶点A作高AD,将点A折叠到点D(如图2),这时EF为折痕,且△BED和△CFD都是等腰三角形,再将△BED和△CFD沿它们各自的对称轴EH、FG折叠,使B、C两点都与点D重合,得到一个矩形EFGH(如图3),我们称矩形EFGH为△ABC的边BC上的折合矩形.
(1)若△ABC的面积为6,则折合矩形EFGH的面积为
3
3

(2)如图4,已知△ABC,在图4中画出△ABC的边BC上的折合矩形EFGH;
(3)如果△ABC的边BC上的折合矩形EFGH是正方形,且BC=2a,那么,BC边上的高AD=
2a
2a
,正方形EFGH的对角线长为
2
a
2
a

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,过△ABC的顶点A作AE⊥BC,垂足为E.点D是射线AE上一动点(点D不与顶点A重合),连结DB、DC.已知BC=m,AD=n.

(1)若动点D在BC的下方时(如图①),AE=3,DE=2,BC=6,求S四边形ABDC
(2)若动点D在BC的下方时(如图①),求S四边形ABDC的值(结果用含m、n的代数式表示);
(3)若动点D在BC的上方时(如图②),(1)中结论是否仍成立?说明理由;
(4)请你按以下要求在8×6的方格中(如图③,每一个小正方形的边长为1),设计一个轴对称图形.设计要求如下:对角线互相垂直且面积为6的格点四边形(4个顶点都在格点上).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,过△ABC的顶点A作AE⊥BC,垂足为E.点D是射线AE上一动点(点D不与顶点A重合),连接DB、DC.已知BC=m,AD=n
(1)若动点D在BC的下方时(如图①),求S四边形ABDC的值(结果用含m、n的代数式表示);
(2)若动点D在BC的上方时(如图②),(1)中结论是否仍成立?说明理由;
(3)请你按以下要求在8×6的方格中(如图③,每一个小正方形的边长为1),设计一个轴对称图形.设计要求如下:对角线互相垂直且面积为6的格点四边形(4个顶点都在格点上).

查看答案和解析>>

同步练习册答案