精英家教网 > 初中数学 > 题目详情

【题目】如图所示,本市新建一座圆形人工湖,为测量该湖的半径,小杰和小丽沿湖边选取A,B,C三根木柱,使得A,B之间的距离与A,C之间的距离相等,并测得BC长为120米,ABC的距离为4米,请你帮他们求出该湖的半径.

【答案】452米

【解析】

设圆心为点,连接,得出=,再根据等弦对等弧,得出点是弧的中点,结合垂径定理的推论,知垂直平分弦,设圆的半径,结合垂径定理和勾股定理列出关于半径的方程,即可求得圆的半径.

如图,连接OB,OA,OA交线段BC于点D,

∵AB=AC,

=.

∴OA⊥BC,

∴BD=DC=BC=60.

∵DA=4,

在Rt△BDO中,OB2=OD2+BD2

设OB=x米,则x2=(x﹣4)2+602,解得x=452.

∴人工湖的半径为452米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:△ABC是等腰三角形,动点P在斜边AB所在的直线上,以PC为直角边作等腰三角形PCQ,其中∠PCQ=90°,探究并解决下列问题:

(1)如图①,若点P在线段AB上,且AC=1+,PA=,则:

①线段PB= ,PC=

②猜想:PA2,PB2,PQ2三者之间的数量关系为

(2)如图②,若点P在AB的延长线上,在(1)中所猜想的结论仍然成立,请你利用图②给出证明过程;

(3)若动点P满足,求的值.(提示:请利用备用图进行探求)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,先描出点,点.

1)描出点关于轴的对称点的位置,写出的坐标

2)用尺规在轴上找一点,使的值最小(保留作图痕迹);

3)用尺规在轴上找一点,使(保留作图痕迹).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料,并解决问题:

如图等边内有一点P,若点P到顶点ABC的距离分别为345,求的度数.为了解决本题,我们可以将绕顶点A旋转到处,此时,这样就可以利用旋转变换,将三条线段PAPBPC转化到一个三角形中,从而求出______

基本运用

请你利用第题的解答思想方法,解答下面问题:已知如图中,EFBC上的点且,求证:

能力提升

如图,在中,,点O内一点,连接AOBOCO,且,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于平面直角坐标系中的任意两点P1(x1,y1)P2(x2,y2),我们把|x1x2|+|y1y2|叫做P1P2两点间的直角距离,记作d(P1,P2)

(1) P0(2,3)O为坐标原点,则d(O,P0)

(2)已知O为坐标原点,动点P(x,y)满足d(O,P)1,请写出xy之间满足的关系式,并在所给的直角坐标系中画出所有符合条件的点P所组成的图形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC内接与⊙OAB是直径,⊙O的切线PCBA的延长线于点POF∥BCACACE,交PC于点F,连接AF

1)判断AF⊙O的位置关系并说明理由;

2)若⊙O的半径为4AF=3,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BC是⊙O的直径,点A在⊙O上,ADBC,垂足为D,AB=AE,BE分别交AD,AC于点F,G.

(1)求证:FA=FG;

(2)BD=DO=2,求弧EC的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,RtABC中,∠C=90° DAB上,且CD=BD.

(1)求证:DAB的中点.

(2)CD为对称轴将△ACD翻折至△A'CD,连接BA',若∠DBC=a,求∠CB A'的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图.在ABC中,∠ACB=60°,AC=1,D是边AB的中点,E是边BC上一点.若DE平分ABC的周长,则DE的长是_____

查看答案和解析>>

同步练习册答案