精英家教网 > 初中数学 > 题目详情

如图,平面直角坐标系中,四边形OABC为矩形,点A,B的坐标分别为(4,0),(4,3),动点M,N分别从O,B同时出发.以每秒1个单位的速度运动.其中,点M沿OA向终点A运动,点N沿BC向终点C运动.过点M作MP⊥OA,交AC于P,连接NP,已知动点运动了x秒.
(1)P点的坐标为多少(用含x的代数式表示);
(2)试求△NPC面积S的表达式,并求出面积S的最大值及相应的x值;
(3)当x为何值时,△NPC是一个等腰三角形?简要说明理由.

解:(1)过点P作PQ⊥BC于点Q,
有题意可得:PQ∥AB,
∴△CQP∽△CBA,
=
=
解得:QP=x,
∴PM=3-x,
由题意可知,C(0,3),M(x,0),N(4-x,3),
P点坐标为(x,3-x).

(2)设△NPC的面积为S,在△NPC中,NC=4-x,
NC边上的高为,其中,0≤x≤4.
∴S=(4-x)×x=(-x2+4x)
=-(x-2)2+
∴S的最大值为,此时x=2.

(3)延长MP交CB于Q,则有PQ⊥BC.
①若NP=CP,
∵PQ⊥BC,
∴NQ=CQ=x.
∴3x=4,
∴x=
②若CP=CN,则CN=4-x,PQ=x,CP=x,4-x=x,
∴x=
③若CN=NP,则CN=4-x.
∵PQ=x,NQ=4-2x,
∵在Rt△PNQ中,PN2=NQ2+PQ2
∴(4-x)2=(4-2x)2+(x)2
∴x=
综上所述,x=,或x=,或x=
分析:(1)求P点的坐标,也就是求OM和PM的长,已知了OM的长为x,关键是求出PM的长,方法不唯一,①可通过PM∥OC得出的对应成比例线段来求;
②也可延长MP交BC于Q,先在直角三角形CPQ中根据CQ的长和∠ACB的正切值求出PQ的长,然后根据PM=AB-PQ来求出PM的长.得出OM和PM的长,即可求出P点的坐标.
(2)可按(1)②中的方法经求出PQ的长,而CN的长可根据CN=BC-BN来求得,因此根据三角形的面积计算公式即可得出S,x的函数关系式.
(3)本题要分类讨论:
①当CP=CN时,可在直角三角形CPQ中,用CQ的长即x和∠ABC的余弦值求出CP的表达式,然后联立CN的表达式即可求出x的值;
②当CP=PN时,那么CQ=QN,先在直角三角形CPQ中求出CQ的长,然后根据QN=CN-CQ求出QN的表达式,根据题设的等量条件即可得出x的值.
③当CN=PN时,先求出QP和QN的长,然后在直角三角形PNQ中,用勾股定理求出PN的长,联立CN的表达式即可求出x的值.
点评:本题主要考查了矩形的性质、解直角三角形、等腰三角形的判定和性质、二次函数的应用等知识点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,平面直角坐标系中,O为直角三角形ABC的直角顶点,∠B=30°,锐角顶点A在双曲线y=
1x
上运动,则B点在函数解析式
 
上运动.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,平面直角坐标系中,⊙P与x轴分别交于A、B两点,点P的坐标为(3,-1),AB精英家教网=2
3

(1)求⊙P的半径.
(2)将⊙P向下平移,求⊙P与x轴相切时平移的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,平面直角坐标系中,OB在x轴上,∠ABO=90°,点A的坐标为(1,2).将△AOB绕点A逆时针旋转90°,则点O的对应点C的坐标为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:平面直角坐标系中,△ABC的三个顶点的坐标为A(a,0),B(b,0),C(0,c),且a,b,c满足
a+2
+|b-2|+(c-b)2=0
.点D为线段OA上一动点,连接CD.
(1)判断△ABC的形状并说明理由;
(2)如图,过点D作CD的垂线,过点B作BC的垂线,两垂线交于点G,作GH⊥AB于H,求证:
S△CAD
S△DGH
=
AD
GH

(3)如图,若点D到CA、CO的距离相等,E为AO的中点,且EF∥CD交y轴于点F,交CA于M.求
FC+2AE
3AM
的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图在平面直角坐标系中,A点坐标为(8,0),B点坐标为(0,6)C是线段AB的中点.请问在y轴上是否存在一点P,使得以P、B、C为顶点的三角形与△AOB相似?若存在,求出P点坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案