精英家教网 > 初中数学 > 题目详情
如图是窗子的形状,它是由矩形上面加一个半圆构成.已知窗框的用料是6m,要使窗子能透过最多的光线,它的尺寸如何设计?
∵窗框的用料是6m,
∴假设AD=2x,AB=
6-πx-4x
2

∴窗子的面积为:S=2x•
6-πx-4x
2
+
1
2
πx2=(-
π
2
-4)x2+6x,
当x=
-6
2×(-
π
2
-4)
=
6
8+π
时,此时面积最大.
∴AD=
12
8+π
,AB=
12
8+π

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

把抛物线y=-x2向左平移2个单位,然后向上平移5个单位,则平移后抛物线的解析式为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图已知抛物线y=mx2+nx+p与y=x2+6x+5关于y轴对称,并与y轴交于点M,与x轴交于点A和B.求出y=mx2+nx+p的解析式,试猜想出一般形式y=ax2+bx+c关于y轴对称的二次函数解析式(不要求证明).

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

二次函数y=ax2+bx+c的图象如图所示.有下列结论:①b2-4ac<0;②ab>0;③a-b+c=0;④4a+b=0;⑤当y=2时,x只能等于0.其中正确的是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

利用计算器进行模拟试验.15个人中有两个人同日过生日(以31天计,只考虑日期,不考虑月份)的概率.请写出你的实验过程,记录你所利用的数据,并结合你所学的知识简要给出结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知△ABC中,∠A=90°,AB=6,AC=8,D是AB上一动点,DEBC,交AC于E,将四边形BDEC沿DE向上翻折,得四边形B′DEC′,B′C′与AB、AC分别交于点M、N.
(1)证明:△ADE△ABC;
(2)设AD为x,梯形MDEN的面积为y,试求y与x的函数关系式.当x为何值时y有最大值?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在Rt△ABC中,AB=BC=12cm,点D从点A开始沿边AB以2cm/s的速度向点B移动,移动过程中始终保持DEBC,DFAC.
(1)试写出四边形DFCE的面积S(cm2)与时间t(s)之间的函数关系式并写出自变量t的取值范围.
(2)试求出当t为何值时四边形DFCE的面积为20cm2
(3)四边形DFCE的面积能为40吗?如果能,求出D到A的距离;如果不能,请说明理由.
(4)四边形DFCE的面积S(cm2)有最大值吗?有最小值吗?若有,求出它的最值,并求出此时t的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知:在面积为7的梯形ABCD中,ADBC,AD=3,BC=4,P为边AD上不与A、D重合的一动点,Q是边BC上的任意一点,连接AQ、DQ,过P作PEDQ交AQ于E,作PFAQ交DQ于F,则△PEF面积最大值是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,抛物线y=
1
2
x2-3x+c
交x轴正半轴于A、B两点,交y轴于C点,过A、B、C三点作⊙D.若⊙D与y轴相切.
(1)求c的值;
(2)连接AC、BC,设∠ACB=α,求tanα;
(3)设抛物线顶点为P,判断直线PA与⊙D的位置关系,并证明.

查看答案和解析>>

同步练习册答案