精英家教网 > 初中数学 > 题目详情
已知:如图,在直角坐标系中,O为原点,点A、B的坐标分别为(3
3
-3
,0)、(3+3
3
,0),点C、D在一个反比例函数的图象上,且∠AOC=45°,∠ABC=30°,AB=BC,DA=DB.
求:点C、D两点的坐标.
过C、D分别作x轴的垂线,垂足分别为E、F,如图,
∵点A、B的坐标分别为(3
3
-3
,0)、(3+3
3
,0),
∴AB=3+3
3
-(3
3
-3)=6,
而∠ABC=30°,AB=BC,
∴BC=AB=6,CE=
1
2
BC=3,
又∵∠AOC=45°
∴OE=CE=3,
∴C点坐标为(3,3);
设反比例函数的解析式为y=
k
x

把C(3,3)代入得k=3×3=9,
∴反比例函数的解析式为y=
9
x

又∵DA=DB,
∴AF=BF=3,
∴OF=3+3
3
-3=3
3

即点D横坐标为3
3

对于y=
9
x
,令x=3
3
,则y=
9
3
3
=
3

∴D点坐标为(3
3
3
).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,点C在反比例函数y=
k
x
的图象上,过点C作CD⊥y轴,交y轴负半轴于点D,且△ODC的面积是3.
(1)求反比例函数y=
k
x
的解析式;
(2)将过点O且与OC所在直线关于y轴对称的直线向上平移2个单位后得到直线AB,如果CD=1,求直线AB的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知直线y1=-2x经过点P(-2,a),点P关于y轴的对称点P′在反比例函数y2=
k
x
(k≠0)的图象上.
(1)求点P′的坐标;
(2)求反比例函数的解析式,并直接写出当y2<2时自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知一次函数y=2x+2的图象与y轴交于点B,与反比例函数y=
k1
x
的图象的一个交点为A(1,m).过点B作AB的垂线BD,与反比例函数y=
k2
x
(x>0)的图象交于点D(n,-2).
(1)求k1和k2的值;
(2)若直线AB、BD分别交x轴于点C、E,试问在y轴上是否存在一个点F,使得△BDF△ACE?若存在,求出点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知反比例函数y=
k
x
的图象经过点P(2,-1),则它的解析式为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知一次函数y1=x+m(m为常数)的图象与反比例函数y2=
k
x
(k为常数,k≠0)的图象相交于点A(1,3).
(1)求这两个函数的解析式及其图象的另一交点B的坐标;
(2)点C(a,b)在反比例函数y2=
k
x
的图象上,求当1≤a≤3时,b的取值范围;
(3)观察图象,写出使函数值y1≥y2的自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,一次函数y=-
1
3
x+2
的图象分别与x轴、y轴相交于A、B两点,点P为线段AB上一点,PC⊥x轴于点C,延长PC交反比例函数y=
k
y
(x>0)
的图象于点Q,且tan∠OAQ=
1
3
.连接OP、OQ,四边形OQAP的面积为6.
(1)求k的值;
(2)判断四边形OQAP的形状,并加以证明.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在直角坐标系中,已知菱形ABCD的面积为3,顶点A在双曲线y=
k
x
上,CD与y轴重合,则k的值是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在矩形OABC中,AB=2BC,点A在y轴的正半轴上,点C在x轴的正半轴上,连接OB,反比例函数y=
k
x
(k≠0,x>0)的图象经过OB的中点D,与BC边交于点E,点E的横坐标是4,则k的值是(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案