精英家教网 > 初中数学 > 题目详情
如图,△ABC的面积为1,分别取AC、BC两边的中点A1、B1,则四边形A1ABB1的面积为
3
4
,再分别取A1C、B1C的中点A2、B2,A2C、B2C的中点A3、B3,依次取下去….利用这一图形,能直观地计算出
3
4
+
3
42
+
3
43
+…+
3
4n
=(  )
A、1
B、
4n-1
4n
C、
4n+1
4n
D、1-
1
4n
考点:相似三角形的判定与性质,三角形中位线定理
专题:规律型
分析:由△CA1B1∽△CAB得出面积比等于相似比的平方,得出△CA1B1的面积为
1
4
,因此四边形A1ABB1的面积为1-
1
4
,以此类推.四边形的面积为
1
4
-
1
42
1
42
-
1
43
,…,根据规律求出式子的值.
解答:解:∵A1、B1分别是AC、BC的中点,
∴A1B1是△ABC的中位线,
∴A1B1∥AB,A1B1=
1
2
AB

∴△A1B1C∽△ABC,
SA1B1C
S△ABC
=(
A1B1
AB
)2=
1
4

∵S△ABC=1,
SA1B1C=
1
4
S四边形A1ABB1=1-
1
4
=
3
4

同理得:
3
42
=
1
4
-
1
42
3
43
=
1
42
-
1
43
,…,
3
4n
=
1
4n-1
-
1
4n

3
4
+
3
42
+
3
43
+…+
3
4n
=1-
1
4
+
1
4
-
1
42
+
1
42
-
1
43
+…+
1
4n-1
-
1
4n
=1-
1
4n

故选:D
点评:本题考查了三角形中位线定理和相似三角形的判定与性质;相似三角形面积比等于相似比的平方是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

从甲、乙两位运动员中选出一名参加在规定时间内的投篮比赛.预先对这两名运动员进行了6次测试,成绩如下(单位:个):
甲:6,12,8,12,10,12;
乙:9,10,11,10,12,8;
(1)填表:
平均数众数方差
10
 
 
 
10
5
3
(2)根据测试成绩,请你运用所学的统计知识作出分析,派哪一位运动员参赛更好?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知C点是直线AB上的一动点.
(1)如图1,当C在线段AB上运动时,作DC⊥AB,垂足为C,EA⊥AB,垂足为A,且DC=AB,AE=BC.连接DE,判断△BDE的形状,并说明理由;
(2)如图2,当C在线段AB的延长线上运动时,作DC⊥AB,垂足为C,EA⊥AB,垂足为A,且DC=AB,AE=BC.连接DE,判断△BDE的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在4×7的点阵中任两点竖直或水平相邻的点都相距1个单位长度,已知线段AB交线段CD于点E,试求出线段AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在?ABCD中,点E是AD的中点,连接CE、BD相交于点F,则△DEF的周长与△BCF的周长之比C△DEF:C△BCF=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

在阳光下,高为6m的旗杆在地面上的影长为4m,在同一时刻,测得附近一座建筑物的影长为36m,则这座建筑物的高度为
 
m.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,BD平分∠ABC,交AC于点D,过点D作BC的平分线,交AB于点E,请判断△BDE的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

若抛物线y=mx2+2mx+1的顶点在x轴上,则m的值为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在△ABC中,AB=AC,DE是AB的垂直平分线,△BCE的周长为34cm,且BC=20cm,求AB的长.

查看答案和解析>>

同步练习册答案