【题目】已知平面直角坐标系中两定点、,抛物线过点A,B,与y交于C点,点P(m,n)为抛物线上一点.
(1)求抛物线的解析式和点C的坐标;
(2)当∠APB为钝角时,求m的取值范围;
(3)当∠PAB=∠ABC时,求点P的坐标.
【答案】解:(1)∵抛物线过点A,B,
∴,解得: ,
∴抛物线的解析式为: .
∴C.
(2)以AB为直径作圆M,与y轴交于点P.则抛物线在圆内的部分,能使∠APB为钝角,
∴M(,0),⊙M的半径=.
∵P是抛物线与y轴的交点,
∴OP=2,
∴MP=
∴P在⊙M上,
∴由抛物线的对称性可知, ,
∴当-1<m<0或3<m<4时,∠APB为钝角.
(3)在Rt△OBC中, .
第一种情况:过A作AP∥BC,交抛物线于点P .
∴∠PAB=∠ABC.
过P作PQ⊥AB于Q,
∴.
∵P(m,n),
∴PQ=n,AQ=m+1
∴.
∴.
解得
∴
第二种情况:点P关于x轴的对称点的坐标为
∴直线AP″的解析式为
∴解得
∴
∴
【解析】试题(1)将A点,B点坐标代入解析式,即可求出解析式,可得 C点坐标;(2)以AB为直径作圆M,与y轴交于点P.因为AB为直径,所以当抛物线上的点P在⊙C的内部时,满足∠APB为钝角,根据题意可证得P在⊙M上,由抛物线的对称性可知, ,可得-1<m<0,或3<m<4;(3)根据题意分两种情况进行讨论,即可得出答案.
科目:初中数学 来源: 题型:
【题目】如图,△ABC是等边三角形,AC上有一点D,分别以BD为边作等边△BDE和等腰△BDF,边BC、DE交于点H,点F在BA延长线上且DB=DF,连接CE.
(1)若AB=8,AD=4,求△BDF的面积;
(2)求证:BC=AF+CE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数的图象如图所示,则关于的一元二次方程的根为________;不等式的解集是________;当________时,随的增大而减小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直角坐标系中的网格由单位正方形构成,△ABC中,A点坐标为(2,3),B点坐标为(-2,0),C点坐标为(0,-1).
(1)AC的长为______;
(2)求证:AC⊥BC;
(3)若以A、B、C及点D为顶点的四边形为平行四边形ABCD,画出平行四边形ABCD,并写出D点的坐标______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=3,BC=5,以B为圆心BC为半径画弧交AD于点E,连接CE,作BF⊥CE,垂足为F,则tan∠FBC的值为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于平面直角坐标系中的点,若点的坐标为 (其中为常数,且),则称点为点的“之雅礼点”.例如:的“之雅礼点”为,即.
(1)①点的 “之雅礼点” 的坐标为___________;
②若点的“之雅礼点” 的坐标为,请写出一个符合条件的点的坐标_________;
(2)若点在轴的正半轴上,点的“之雅礼点”为点,且为等腰直角三角形,则的值为____________;
(3)在(2)的条件下,若关于的分式方程无解,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+c交x轴于A、B两点(A在B的左侧),且OA=3,OB=1,与y轴交于C(0,3),抛物线的顶点坐标为D(﹣1,4).
(1)求A、B两点的坐标;
(2)求抛物线的解析式;
(3)过点D作直线DE∥y轴,交x轴于点E,点P是抛物线上B、D两点间的一个动点(点P不与B、D两点重合),PA、PB与直线DE分别交于点F、G,当点P运动时,EF+EG是否为定值?若是,试求出该定值;若不是,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,有一座抛物线型拱桥,已知桥下在正常水位AB时,水面宽8m,水位上升3m, 就达到警戒水位CD,这时水面宽4m,若洪水到来时,水位以每小时0.2m的速度上升,求水过警戒水位后几小时淹到桥拱顶.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com