精英家教网 > 初中数学 > 题目详情
为了绿化城市,美化环境,园林部门计划购买甲、乙两种树苗共800株,甲种树苗每株24元,乙种树苗每株30元,相关资料表明:甲、乙两种树苗的成活率分别为85%,90%。
(1)若购买这两种树苗共用去21000元,则甲、乙两种树苗各购买多少株?
(2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株?
(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用。
(1)购买甲种树苗500株,乙种树苗300株(2)320株(3)当选购甲种树苗320株,乙种树苗480株时,总费用最低,为22080元
(1)设购买甲种树苗株,乙种树苗株,得
   解得
答:购买甲种树苗500株,乙种树苗300株。
(2)设购买甲种树苗株,乙种树苗株,得
    解得
答:甲种树苗至少购买320株。
(3)设甲种树苗购买株,购买树苗的费用为元,

 ∴增大而减小 ∴
时,有最小值,最小=
答:当选购甲种树苗320株,乙种树苗480株时,总费用最低,为22080元。
(1)设购买甲种树苗株,乙种树苗株,列方程组求得
(2)设购买甲种树苗株,乙种树苗株,列不等式求解
(3)设甲种树苗购买株,购买树苗的费用为元,列出关系式,根据函数的性质求出w的最小值.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图1,在等边△ABC中,点D是边AC的中点,点P是线段DC上的动点(点P与点C不重合),连结BP.将△ABP绕点P按顺时针方向旋转α角(0°<α<180°),得到△A1B1P,连结AA1,射线AA1分别交射线PB、射线B1B于点EF.
 
(1) 如图1,当0°<α<60°时,在α角变化过程中,△BEF与△AEP始终存在      关系(填“相似”或“全等”),并说明理由;
(2)如图2,设∠ABP=β . 当60°<α<180°时,在α角变化过程中,是否存在△BEF与△AEP全等?若存在,求出αβ之间的数量关系;若不存在,请说明理由;
(3)如图3,当α=60°时,点EF与点B重合. 已知AB=4,设DP=x,△A1BB1的面
积为S,求S关于x的函数关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,AC = BCAB = 8,CDAB,垂足为点DM为边AB上任意一点,点N在射线CB上(点N与点C不重合),且MC = MN.设AM = x

(1)如果CD = 3,AM = CM,求AM的长;
(2)如果CD = 3,点N在边BC上.设CN = y,求yx的函数解析式,并写出函数的定义域;
(3)如果∠ACB = 90°,NEAB,垂足为点E.当点M在边AB上移动时,试判断线段ME的长是否会改变?说明你的理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

科学研究发现,空气含氧量(克/立方米)与海拔高度(米)之间近似地满足一次函数关系.经测量,在海拔高度为0米的地方,空气含氧量约为299克/立方米;在海拔高度为2000米的地方,空气含氧量约为235克/立方米.
(1)求出的函数表达式;
(2)已知某山的海拔高度为1200米,请你求出该山山顶处的空气含氧量约为多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如果一次函数y=mx+3的图象经过第一、二、四象限,则m的取值范围是
  ▲  

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

爷爷每天坚持体育锻炼,某天他慢跑离家到中山公园,打了一会儿太极拳后散步回家。下面能反映当天小华的爷爷离家的距离y与时间x的函数关系的大致图象是(  )

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知四条直线y=kx-3,y=-1,y=3和x=1所围成的四边形的面积是8,则k的值为     
A.或-4B.或4  C.或-2D.2或-2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某超市销售一种新鲜“酸奶”, 此“酸奶”以每瓶3元购进,5元售出.这种“酸奶”的保质期不超过一天,对当天未售出的“酸奶”必须全部做销毁处理.
(1)该超市某一天购进20瓶酸奶进行销售.若设售出酸奶的瓶数为x(瓶),销售酸奶的利润为y(元),写出这一天销售酸奶的利润y(元)与售出的瓶数x(瓶)之间的函数关系式.为确保超市在销售这20瓶酸奶时不亏本,当天至少应售出多少瓶?
(2)小明在社会调查活动中,了解到近10天当中,该超市每天购进酸奶20瓶的销售情况统计如下:
每天售出瓶数
17
18
19
20
频数
1
2
2
5
根据上表,求该超市这10天每天销售酸奶的利润的平均数;
(3)小明根据(2)中,10天酸奶的销售情况统计,计算得出在近10天当中,其实每天购进19瓶总获利要比每天购进20瓶总获利还多.你认为小明的说法有道理吗?试通过计算说明.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

荆门市是著名的“鱼米之乡”.某水产经销商在荆门市长湖养殖场批发购进草鱼和乌鱼(俗称黑鱼)共75千克,且乌鱼的进货量大于40千克.已知草鱼的批发单价为8元/千克,乌鱼的批发单价与进货量的函数关系如图所示.
(1)请直接写出批发购进乌鱼所需总金额y(元)与进货量x(千克)之间的函数关系式;
(2)若经销商将购进的这批鱼当日零售,草鱼和乌鱼分别可卖出89%、95%,要使总零售量不低于进货量的93%,问该经销商应怎样安排进货,才能使进货费用最低?最低费用是多少?

查看答案和解析>>

同步练习册答案