分析 (1)设每名熟练工和新工人每月分别可以安装x、y辆电动汽车.
根据“1名熟练工和2名新工人每月可安装8辆电动汽车”和“2名熟练工和3名新工人每月可安装14辆电动汽车”列方程组求解.
(2)设工厂有a名熟练工.根据新工人和抽调的熟练工刚好能完成一年的安装任务,根据a,n都是正整数和0<n<10,进行分析n的值的情况;
(3)建立函数关系式,根据使新工人的数量多于熟练工,同时工厂每月支出的工资总额W(元)尽可能地少,两个条件进行分析.
解答 解:(1)设每名熟练工和新工人每月分别可以安装x、y辆电动汽车.
根据题意,得
$\left\{\begin{array}{l}{x+2y=8}\\{2x+3y=14}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{x=4}\\{y=2}\end{array}\right.$.
答:每名熟练工和新工人每月分别可以安装4、2辆电动汽车.
(2)设工厂有a名熟练工.
根据题意,得12(4a+2n)=240,
2a+n=10,
n=10-2a,
又a,n都是正整数,0<n<10,
所以n=8,6,4,2.
即工厂有4种新工人的招聘方案.
①n=8,a=1,即新工人8人,熟练工1人;
②n=6,a=2,即新工人6人,熟练工2人;
③n=4,a=3,即新工人4人,熟练工3人;
④n=2,a=4,即新工人2人,熟练工4人.
(3)结合(2)知:要使新工人的数量多于熟练工,则n=8,a=1;或n=6,a=2;或n=4,a=3.
根据题意,得
W=2000a+1200n=2000a+1200(10-2a)=12000-400a.
要使工厂每月支出的工资总额W(元)尽可能地少,则a应最大.
显然当n=4,a=3时,工厂每月支出的工资总额W(元)尽可能地少.
点评 本题主要考查一次函数,二元一次方程组,二元一次方程三个考点,能够理解题意,正确找到等量关系和不等关系,熟练解方程组和根据条件分析不等式中未知数的值是解决问题的关键.
科目:初中数学 来源: 题型:选择题
A. | AC=2CD | B. | DB⊥AD | C. | ∠ABC=60° | D. | ∠DAC=∠CAB |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com