精英家教网 > 初中数学 > 题目详情
△ABC中,AB=15,AC=13,高AD=12,则△ABC的面积为(  )
分析:分两种情况:三角形ABC为锐角三角形;三角形ABC为钝角三角形,根据AD垂直于BC,利用垂直的定义得到三角形ABD与三角形ADC为直角三角形,利用勾股定理分别求出BD与DC,由BD+DC=BC或BD-DC=BC求出BC,利用三角形的面积公式即可求出三角形ABC的面积.
解答:解:分两种情况考虑:
当△ABC为锐角三角形时,如图1所示,
∵AD⊥BC,∴∠ADB=∠ADC=90°,
在Rt△ABD中,AB=15,AD=12,
根据勾股定理得:BC=
AB2-AD2
=9,
在Rt△ADC中,AC=13,AD=12,
根据勾股定理得:DC=
AC2-AD2
=5,
∴BC=BD+DC=9+5=14,
则S△ABC=
1
2
BC•AD=84;
当△ABC为钝角三角形时,如图2所示,
∵AD⊥BC,∴∠ADB=90°,
在Rt△ABD中,AB=15,AD=12,
根据勾股定理得:BC=
AB2-AD2
=9,
在Rt△ADC中,AC=13,AD=12,
根据勾股定理得:DC=
AC2-AD2
=5,
∴BC=BD-DC=9-5=4,
则S△ABC=
1
2
BC•AD=24,
综上,△ABC的面积为24或84.
故选C
点评:此题考查了勾股定理,利用了分类讨论的数学思想,灵活运用勾股定理是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,∠A=36°,
(1)用尺规作图的方法,过B点作∠ABC的平分线交AC于D(不写作法,保留作图痕迹);
(2)求证:BC=BD=AD;
(3)求证:AD2=AC•DC;
(4)设
CDDA
=x,求x.

查看答案和解析>>

科目:初中数学 来源: 题型:

15、如图,在△ABC中,AB=AC,点D,E在直线BC上运动.如果∠DAE=l05°,△ABD∽△ECA,则∠BAC=
30
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网△ABC中,AB=AC,D、E分别是AB、AC的中点,若AB=4,BC=6,则△ADE的周长是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

13、在△ABC中,AB=AC,BD是△ABC中线,已知△ABD和△BDC的周长之差为6,△ABC的周长是30,求这个等腰三角形的三边长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在钝角△ABC中,AB=AC,以BC为直径作⊙O,⊙O与BA、CA的延长线分别交于D、E两点精英家教网,连接AO、BE、DC.
(1)求证:△ABO∽△CBD;
(2)若AB=2AD,且BC=2,求∠ACB的度数.

查看答案和解析>>

同步练习册答案