精英家教网 > 初中数学 > 题目详情
已知,OM、ON分别是∠AOC,∠BOC的角平分线.

(1)如图1,若∠AOB=120°,∠BOC=30°,则∠MON=
60°
60°

(2)如图1,若∠AOB=120°,∠BOC=β°,能否求出∠MON的度数?若能,求出其值,若不能,试说明理由;
(3)如图2,若∠AOB=α°,∠BOC=β,是否仍然能求出∠MON的度数,若能,求∠MON的度数(用含α或β的式子表示),并从你的求解过程中总结出你发现的规律.
分析:(1)根据∠AOB=120°,∠BOC=30°,可得∠AOC=∠AOB+∠BOC=120°+30°=150°,再利用OM是∠AOC的平分线,ON是∠BOC的平分线,即可求得答案;
(2)根据∠MON=∠MOC-∠NOC,又利用∠AOB=120°,∠BOC=β°,由(1)可得出答案;
(3)利用(1)(2)的计算方法得出规律即可.
解答:解:(1)∵∠AOB=120°,∠BOC=30°,
∴∠AOC=∠AOB+∠BOC=120°+30°=150°,
∵OM是∠AOC的平分线,ON是∠BOC的平分线,
∴∠MOC=
1
2
∠AOC,∠NOC=
1
2
∠BOC,
∴∠MON=∠MOC-∠NOC=75°-15°=60°,

(2)当∠AOB=120°,∠BOC=β°时,
∴∠MON=∠MOC-∠NOC=
1
2
(120+β)°-
1
2
β
°=60°;

(3)由(1)(2)可知:
∴∠MON=∠MOC-∠NOC=
1
2
(α+β)°-
1
2
β°=
1
2
α°.
∠MON的度数始终等于∠AOB角度的一半.
点评:此题主要考查角的计算和角平分线的定义等知识点的理解和掌握,难度不大,属于基础题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,OB、OC分别为定角∠AOD内的两条动射线
(1)当OB、OC运动到如图的位置时,∠AOC+∠BOD=110°,∠AOB+∠COD=50°,求∠AOD的度数;
(2)在(1)的条件下,射线OM、ON分别为∠AOB、∠COD的平分线,当∠COB绕着点O旋转时,下列结论:①∠AOM-∠DON的值不变;②∠MON的度数不变.可以证明,只有一个是正确的,请你作出正确的选择并求值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知∠AOB=90°,OC为一射线,OM,ON分别平分∠BOC和∠AOC,则∠MON的大小为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知OC是∠AOB内部的一条射线,M、N分别为OA、OC上的点,线段OM、ON分别以20°/s、10°/s的速度绕点O逆时针旋转.
(1)如图①,若∠AOB=120°,当OM、ON逆时针旋转2s时,分别到OM′、ON′处,求∠BON′+∠COM′的值;
(2)如图②,若OM、ON分别在∠AOC、∠COB内部旋转时,总有∠COM=2∠BON,求
∠BOC∠AOB
的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,OM和ON分别平分∠AOC和∠BOC.
(1)如图:若C为∠AOB内一点,探究∠MON与∠AOB的数量关系;
(2)若C为∠AOB外一点,且C不在OA、OB的反向延长线上,请你画出图形,并探究∠MON与∠AOB的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

作业宝已知,OM和ON分别平分∠AOC和∠BOC.
(1)如图:若C为∠AOB内一点,探究∠MON与∠AOB的数量关系;
(2)若C为∠AOB外一点,且C不在OA、OB的反向延长线上,请你画出图形,并探究∠MON与∠AOB的数量关系.

查看答案和解析>>

同步练习册答案