【题目】(1)如图,在△ABC中,AB=AC,AB的垂直平分线交BC的延长线于E,交AC于F,
∠A=50°,AB+BC=16cm,则△BCF的周长和∠EFC分别为多少?
(2)(生活应用题)某公司对一批某一品牌的衬衣的质量抽检结果如下表:
①从这批衬衣中任抽1件是次品的概率约为多少?
②如果销售这批衬衣600件,那么至少需要准备多少件正品衬衣供买到次品的顾客调换?
【答案】(1)16;40°;(2)①0.06;②准备36件正品衬衣供顾客调换.
【解析】
(1)△BCF的周长=BC+CF+BF.根据线段垂直平分线性质,BF=AF.所以CF+BF=AC=AB;根据等腰三角形性质,∠EFC=∠AFD=∠AFB,已知∠A度数,求∠AFB即可.
(2) ①根据概率的求法,找准两点:
1、符合条件的情况数目;
2、全部情况的总数;二者的比值就是其发生的概率;
②需要准备调换的正品衬衣数=销售的衬衫数×次品的概率,依此计算即可.
(1)∵DE垂直平分AB,∴FA=FB.
∴△BCF的周长=BC+CF+BF=BC+CF+AF
=BC+AC=BC+AB=16cm,
∵FA=FB,∴∠A=∠ABF=50°,
∴∠AFB=180°50°50°=80°
∴∠EFC=∠AFD=∠AFB=40°
(2) ①抽查总体数m=50+100+200+300+400+500=1550,
次品件数n=0+4+16+19+24+30=93,
P(抽到次品)==0.06.
②根据(1)的结论:P(抽到次品)=0.06,
则600×0.06=36(件).
答:准备36件正品衬衣供顾客调换.
科目:初中数学 来源: 题型:
【题目】(1)阅读理解:课外兴趣小组活动时,老师提出了如下问题:
在△ABC中,AB=9,AC=5,求BC边上的中线AD的取值范围。
小明在组内经过合作交流,得到了如下的解决方法(如图1):
①延长AD到Q,使得DQ=AD;
②再连接BQ,把AB、AC、2AD集中在△ABQ中;
③利用三角形的三边关系可得4<AQ<14,则AD的取值范围是_____________。
感悟:解题时,条件中若出现“中点”“中线”等条件,可以考虑倍长中线,构造全等三角形,把分散的己知条件和所求证的结论集中到同一个三角形中。
(2)请你写出图1中AC与BQ的位置关系并证明。
(3)思考:已知,如图2,AD是△ABC的中线,AB=AE,AC=AF,∠BAE=∠FAC=90°。试探究线段AD与EF的数量和位置关系并加以证明。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.
(1)求证:DP是⊙O的切线;
(2)若⊙O的半径为3cm,求图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,AD是△ABC的中线,AE⊥AB,AF⊥AC,且AE=AB,AF=AC,AD=3,AB=4.
(1)求AC长度的取值范围;
(2)求EF的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们定义:两边平方和等于第三边平方的两倍的三角形叫做“奇异三角形”.
(1)根据“奇异三角形”的定义,请你判断命题:“等边三角形一定是奇异三角形” 是 命题.(填写“真命题、假命题”)
(2)在RtΔABC中,∠ACB=90°,AB=c,AC=b,BC=a,且b>a,若RtΔABC是“奇异三角形”,则a:b:c= .
(3)如图,在四边形ACBD中,∠ACB=∠ADB=90°,AD=BD,若在四边形ACBD内存在点E使得AE=AD,CB=CE.
①求证:ΔACE是“奇异三角形”;
②当ΔACE是直角三角形时,且AC=,求线段AB 的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A、B的坐标分别是(0,8),(6,0),连接AB,将△AOB沿过点B的直线折叠,使点A落在x轴上的点A'处,折痕所在直线交y轴正半轴于点C.
(1)求直线BC的函数表达式;
(2)把直线BC向左平移,使之经过点A',求平移后直线的函数表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AD为△ABC的角平分线,DE⊥AB于点E,DF⊥AC于点F,连接EF交AD于点G.
(1)求证:AD垂直平分EF;
(2)若∠BAC=60°,猜测DG与AG间有何数量关系?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】请你画出一个以BC为底边的等腰ΔABC,使底边上的高AD=BC.
(1)求tanB和 sinB的值;
(2)在你所画的等腰ΔABC中设底边BC=5米,求腰上的高BE.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com