【题目】在Rt△ABC中,∠BAC=90°,E,F分别是AB,AC上的点,且EF∥BC,作EG平分∠AEF交AC于点G,在EF上取点D,使ED=EA,连接DG并延长,交BA的延长于点P,连接PF.
(1)求证:PD⊥EF;
(2)若ED=DF,求∠B的大小.
(3)在(2)的条件下,若四边形AEDG的面积为S,请直接写出△PEF的面积(用含S的式子表示).
【答案】(1)详见解析;(2)60°;(3)S△PEF=3S.
【解析】
(1)由“SAS”可证△AEG≌△DEG,可得∠GAE=∠GDE=90°,可得PD⊥EF;
(2)由线段垂直平分线的性质可得EG=GF,可得∠GFE=∠GEF,由直角三角形的性质可求∠AEG=∠GEF=∠GFE=30°,由平行线的性质可求解;
(3)先证△PEF是等边三角形,可证四边形AEDG的面积=S△AEF=S△PEF,即可求解.
(1)∵EG平分∠AEF,
∴∠AEG=∠DEG,
在△AEG和△DEG中,
,
∴△AEG≌△DEG(SAS)
∴∠GAE=∠GDE=90°,
∴PD⊥EF;
(2)∵ED=DF,PD⊥EF,
∴EG=GF,
∴∠GFE=∠GEF,
∴∠AEG=∠GEF=∠GFE,
∵∠AEG+∠GEF+∠GFE=90°,
∴∠AEG=∠GEF=∠GFE=30°,
∴∠AEF=60°,
∵EF∥BC,
∴∠AEF=∠B=60°
(2)∵ED=DF,PD⊥EF,
∴PE=PF,且∠PEF=60°,
∴△PEF是等边三角形,
∵AF⊥AB,
∴AE=AP,
∴S△AEF=S△AFP,
∵∠BAC=90°,∠AEG=30°,
∴EG=2AG,
∴GF=2AG,
∴2S△AEG=S△EGF,
∵ED=DF,
∴S△GED=S△GFD,
∴S△GED=S△GFD=S△AEG,
∴四边形AEDG的面积=S△AEF=S△PEF,
∴S△PEF=3S.
科目:初中数学 来源: 题型:
【题目】规定两数a、b之间的一种运算,记作(a,b):如果,那么(a,b)=c.
例如:因为,所以(2,8)=3.
(1)根据上述规定,填空:
(5,125)= ,(-2,4)= ,(-2,-8)= ;
(2)小明在研究这种运算时发现一个现象:,他给出了如下的证明:
设,则,即
∴,即,
∴.
请你尝试运用上述这种方法说明下面这个等式成立的理由.
(4,5)+(4,6)=(4,30)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知□ABCD中,AD=3cm,CD=1cm,∠B=45°,点P从点A出发,沿AD方向匀速运动,速度为3cm/s;点Q从点C出发,沿CD方向匀速运动,速度为1cm/s,连接并延长QP交BA的延长线于点M,过M作MN⊥BC,垂足是N,设运动时间为t(s)(0<t<1),解答下列问题:
(1)是否存在时刻t,使点P在∠BCD的平分线上;
(2)设四边形ANPM的面积为S(cm),求S与t之间的函数关系式;
(3)是否存在某一时刻t,使四边形ANPM与□ABCD面积相等,若存在,求出相应的t值,若不存在,说明理由;
(4)求t为何值时,△ABN为等腰三角形.
备用图
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知C为线段AB的中点,E为线段AB上的点,点D为线段AE的中点.
(1)若线段AB=a,CE=b,|a﹣17|+(b﹣5.5)2=0,求线段AB、CE的长;
(2)如图1,在(1)的条件下,求线段DE的长;
(3)如图2,若AB=20,AD=2BE,求线段CE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:,OB,OM,ON是内的射线.
如图1,若OM平分,ON平分当射线OB绕点O在内旋转时,______度
也是内的射线,如图2,若,OM平分,ON平分,当绕点O在内旋转时,求的大小.
在的条件下,若,当在绕O点以每秒的速度逆时针旋转t秒,如图3,若::3,求t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在长方形ABCD中,点E在BC上,点F在CD上,且满足BE=CF=a,AB=EC=b.
(1)判断△AEF的形状,并证明你的结论;
(2)请用含a,b的代数式表示△AEF的面积;
(3)当△ABE的面积为24,BC长为14时,求△ADF的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,△ABC中,∠BAC=60°,内角∠ABC、∠ACB的平分线相交于点O,则∠BOC=______;
(2)如图2,△ABC中,∠BAC=60°,AD是△ABC的边BC上的高,且∠B=∠1,求∠C的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某电脑公司经销甲种型号电脑,每台售价4000元.为了增加收入,电脑公司决定再经销乙种型号电脑.已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台.
(1)有几种进货方案?
(2)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少? 若考虑投入成本最低,则应选择哪种进货方案?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知将一矩形纸片ABCD折叠,使顶点A与C重合,折痕为EF.
(1)求证:CE=CF;
(2)若AB =8 cm,BC=16 cm,连接AF,写出求四边形AFCE面积的思路.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com