【题目】(1)抛物线经过点A (4,0),点B (1,-3) ,求该抛物线的解析式;
(2)如图,要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,高度为3m,水柱落地处离池中心3m,水管应多长?
(3)如图,点P(>0),在轴正半轴上,过点P作平行于轴的直线,分别交抛物线于点A,B,交抛物线于点C,D,求的值.
【答案】(1);(2) 米;(3)
【解析】试题分析:(1)把A、B的坐标代入抛物线解析式,解方程组,即可求抛物线的解析式;
(2)以池中心为坐标原点,水管为轴建立直角坐标系.设抛物线解析式为 ,把点(3,0)代入,即可求的抛物线的解析式,当x=0时,对应的y的值就是水管的长;
(3)由题意,可得A、B、C、D的坐标,然后求出AB,CD的长,即可得到答案.
试题解析:解:(1)代入点A、B的坐标得: ,解得: ,∴抛物线解析式为: ;
(2)以池中心为坐标原点,水管为轴建立直角坐标系.∵抛物线的顶点坐标为(1,3),
∴设抛物线解析式为,又∵点(3,0)在抛物线上,∴,解得: ,抛物线为.当x=0时y=,故水管应长米;
(3)由题意,可得, , , ,∴, ,∴.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠A=60°,BD、CD分别平分∠ABC、∠ACB,M、N、Q分别在DB、DC、BC的延长线上,BE、CE分别平分∠MBC、∠BCN,BF、CF分别平分∠EBC、∠ECQ,则∠F=________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,D是BA延长线上一点,E是AC的中点.
(1)利用尺规作出∠DAC的平分线AM,连接BE并延长交AM于点F,(要求在图中标明相应字母,保留作图痕迹,不写作法);
(2)试判断AF与BC有怎样的位置关系与数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在△ABC中,AD是BC边上的中线.
(1)画出与△ACD关于点D成中心对称的三角形;
(2)找出与AC相等的线段;
(3)探究:△ABC中AB与AC的和与中线AD之间有何大小关系?并说明理由;
(4)若AB=5,AC=3,求线段AD的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,边长为2的正五边形ABCDE内接于⊙O,AB、DC的延长线交于点F,过点E作EG∥CB交BA的延长线于点G.
(1)求证: ;
(2)证明:EG与⊙O相切,并求AG、BF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将长方形OABC置于平面直角坐标系中,点A的坐标为(0,4),点C的坐标为(m,0)(m>0),点D(m,1)在BC上,将长方形OABC沿AD折叠压平,使点B落在坐标平面内,设点B的对应点为点E.
(1)当m=3时,点B的坐标为_________,点E的坐标为_________;
(2)随着m的变化,试探索:点E能否恰好落在x轴上?若能,请求出m的值;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线l外有不重合的两点A、B.在直线l上求一点C,使得的长度最短,作法为:①作点B关于直线l的对称点B'.②连接AB'交直线l于点C,则点C即为所求.在解决这个问题时,没有用到的知识点是( )
A. 线段的垂直平分线性质 B. 两点之间线段最短
C. 三角形两边之和大于第三边 D. 角平分线的性质
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com