精英家教网 > 初中数学 > 题目详情
如图,△ABC内接于⊙O,AB=BC,过点A的切线与OC的延长线相交于点D,∠BAC=75°,CD=
3
,则AD的长为(  )
分析:首先连接OA,由AB=BC,∠BAC=75°,可求得∠B的度数,又由圆周角定理,即可求得∠O的度数,然后由切线的性质,求得OA⊥AC,然后由直角三角形的性质,求得答案.
解答:解:连接OA,
∵AB=BC,∠BAC=75°,
∴∠BCA=∠BAC=75°,
∴∠B=30°,
∴∠AOD=2∠B=60°,
∵AD是⊙O的切线,
∴OA⊥AD,
∴OD=2OA,
∵CD=
3

设OA=x,则OD=x+
3

∴2x=x+
3

解得:x=
3

∴OA=
3

∴AD=
3
OA=3.
故选B.
点评:此题考查了切线的性质、圆周角定理以及直角三角形三角形的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

15、如图,△ABC内接于⊙O,∠BAC=120°,AB=AC=4.BD为⊙O的直径,则BD=
8

查看答案和解析>>

科目:初中数学 来源: 题型:

21、如图,△ABC内接于⊙O,AB为⊙O的直径,点D在AB的延长线上,∠A=∠D=30°.
(1)判断DC是否为⊙O的切线,并说明理由;
(2)证明:△AOC≌△DBC.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,△ABC内接于⊙O,连接AO并延长交BC于点D,若AO=5,BC=8,∠ADB=90°,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,△ABC内接于⊙O,∠A=30°,若BC=4cm,则⊙O的直径为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC内接于⊙O,AD⊥BC于点D,求证:∠BAD=∠CAO.

查看答案和解析>>

同步练习册答案