精英家教网 > 初中数学 > 题目详情
(2008•宁波)如图,平行四边形ABCD中,AB=4,点D的坐标是(0,8),以点C为顶点的抛物线y=ax2+bx+c经过x轴上的点A,B.
(1)求点A,B,C的坐标;
(2)若抛物线向上平移后恰好经过点D,求平移后抛物线的解析式.

【答案】分析:(1)在平行四边形ABCD中,根据平行四边形的性质,CD∥AB且CD=AB=4,且C的纵坐标与D相同,
运用平行四边形的性质,结合图形得出;
(2)先根据题(1)求出抛物线的解析式,再在次抛物线基础上平移,即抛物线的对称轴不变.根据抛物线的性质特点,可设平移后抛物线的解析式为y=-2(x-4)2+8+k,平移后抛物线经过D点,将D(0,8)代入解析式,求出即可.
解答:解:(1)在平行四边形ABCD中,CD∥AB且CD=AB=4,
∴点C的坐标为(4,8)(1分)
设抛物线的对称轴与x轴相交于点H,
则AH=BH=2,(2分)
∴点A,B的坐标为A(2,0),B(6,0).(4分)

(2)由抛物线y=ax2+bx+c的顶点为C(4,8),
可设抛物线的解析式为y=a(x-4)2+8,(5分)
把A(2,0)代入上式,
解得a=-2.(6分)
设平移后抛物线的解析式为y=-2(x-4)2+8+k,
把(0,8)代入上式得k=32,(7分)
∴平移后抛物线的解析式为y=-2(x-4)2+40,(8分)
即y=-2x2+16x+8.
点评:考查二次函数顶点,对称轴的性质,以及抛物线上下平移时的特征.
练习册系列答案
相关习题

科目:初中数学 来源:2010年江苏省南京市栖霞区中考数学一模试卷(解析版) 题型:解答题

(2008•宁波)如图,平行四边形ABCD中,AB=4,点D的坐标是(0,8),以点C为顶点的抛物线y=ax2+bx+c经过x轴上的点A,B.
(1)求点A,B,C的坐标;
(2)若抛物线向上平移后恰好经过点D,求平移后抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:2008年浙江省宁波市中考数学试卷(解析版) 题型:解答题

(2008•宁波)如图,平行四边形ABCD中,AB=4,点D的坐标是(0,8),以点C为顶点的抛物线y=ax2+bx+c经过x轴上的点A,B.
(1)求点A,B,C的坐标;
(2)若抛物线向上平移后恰好经过点D,求平移后抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:2008年全国中考数学试题汇编《三角形》(16)(解析版) 题型:解答题

(2008•宁波)如图,把一张标准纸一次又一次对开,得到“2开”纸,“4开”纸,“8开”纸,“16开”纸….已知标准纸的短边长为a.
(1)如图2,把这张标准纸对开得到的“16开”张纸按如下步骤折叠:
第一步:将矩形的短边AB与长边AD对齐折叠,点B落在AD上的点B'处,铺平后得折痕AE;
第二步:将长边AD与折痕AE对齐折叠,点D正好与点E重合,铺平后得折痕AF.
则AD:AB的值是______

查看答案和解析>>

科目:初中数学 来源:2009年河南省周口市扶沟县中考数学模拟试卷(一)(解析版) 题型:填空题

(2008•宁波)如图,菱形OABC中,∠A=120°,OA=1,将菱形OABC绕点O按顺时针方向旋转90°,则图中由弧BB′,B′A′,弧A′C,CB围成的阴影部分的面积是    .(结果保留根号)

查看答案和解析>>

同步练习册答案