【题目】如图,二次函数y1=x2+bx+c与一次函数y2=x+a交于点A(﹣1,0),B(d,5).
(1)求二次函数y1的解析式;
(2)当y1<y2时,则x的取值范围是 ;
(3)已知点P是在x轴下方的二次函数y1图象的点,求△OAP的面积S的最大值.
【答案】(1)y1=x2﹣2x﹣3;(2)﹣1<x<4;(3)△OAP的面积S的最大值是2
【解析】
(1)用待定系数法求出y2的解析式,进而求出B的坐标,再用待定系数法求y1的解析式即可;
(2)由题意可知,当y1<y2时,直线在抛物线上方部分所对应的x的范围即为所求.
(3)根据面积公式可知,当△OAP的面积S最大时,P点的纵坐标的绝对值最大,从而可确定P点的坐标,进而可求面积的最大值.
(1)把A(﹣1,0)代入y2=x+a,得:
解得
∴
把B(d,5)代入,得:
解得
所以B(4,5).
把A(﹣1,0),B(4,5)分别代入y1=x2+bx+c,得:
解得:
故二次函数y1的解析式为:y1=x2﹣2x﹣3.
(2)结合函数图象知:当y1<y2时,则x的取值范围是:﹣1<x<4.
故答案是:﹣1<x<4.
(3)由y1=x2﹣2x﹣3知,y1=(x﹣1)2﹣4.即该抛物线的顶点坐标是(1,﹣4).
由于S=OA|yP|,且OA=1,
所以当|yP|取最大值时,S取最大值.
所以当|yP|=4时,S最大值=OA|yP|=×1×4=2.
即:△OAP的面积S的最大值是2.
科目:初中数学 来源: 题型:
【题目】如图,已知⊙O的半径为4,四边形ABCD为⊙O的内接四边形,且AB=4,AD=4,则∠BCD的度数为( )
A.105°B.115°C.120°D.135°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市某校为了让学生的课余生活丰富多彩,开展了以下课外活动:
代号 | 活动类型 |
A | 经典诵读与写作 |
B | 数学兴趣与培优 |
C | 英语阅读与写作 |
D | 艺体类 |
E | 其他 |
为了解学生的选择情况,现从该校随机抽取了部分学生进行问卷调查(参与问卷调查的每名学生只能选择其中一项),并根据调查得到的数据绘制了如图所示的两幅不完整的统计图.请根据统计图提供的信息回答下列问题(要求写出简要的解答过程).
(1)此次共调查了 名学生.
(2)将条形统计图补充完整.
(3)“数学兴趣与培优”所在扇形的圆心角的度数为 .
(4)若该校共有2000名学生,请估计该校喜欢A、B、C三类活动的学生共有多少人?
(5)学校将从喜欢“A”类活动的学生中选取4位同学(其中女生2名,男生2名)参加校园“金话筒”朗诵初赛,并最终确定两名同学参加决赛,请用列表或画树状图的方法,求出刚好一男一女参加决赛的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在矩形ABCD中,点P在AD上,AB=2,AP=1.直角尺的直角顶点放在点P处,直角尺的两边分别交AB、BC于点E、F,连接EF(如图1).
(1)当点E与点B重合时,点F恰好与点C重合(如图2).
①求证:△APB∽△DCP;
②求PC、BC的长.
(2)探究:将直角尺从图2中的位置开始,绕点P顺时针旋转,当点E和点A重合时停止.在这个过程中(图1是该过程的某个时刻),观察、猜想并解答:
① tan∠PEF的值是否发生变化?请说明理由.
② 设AE=x,当△PBF是等腰三角形时,请直接写出x的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在和中,,点为射线,的交点.
(1)问题提出:如图1,若,.
①与的数量关系为________;
②的度数为________.
(2)猜想论证:如图2,若,则(1)中的结论是否成立?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线解析式为y=x2,点A1的坐标为(1,1),连接OA1;过A1作A1B1⊥OA1,分别交y轴、抛物线于点P1、B1;过B1作B1A2⊥A1B1分别交y轴、抛物线于点P2、A2;过A2作A2B2⊥B1A2,分别交y轴、抛物线于点P3、B2…;则点Pn的坐标是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙O,∠B=600,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.
(1)求证:PA是⊙O的切线;
(2)若PD=,求⊙O的直径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是一位同学做的一道作图题:
已知线段、、(如图所示),求作线段,使.
他的作法如下:
1.以下为端点画射线,.
2.在上依次截取,.
3.在上截取.
4.联结,过点作,交于点.
所以:线段______就是所求的线段.
(1)试将结论补完整:线段______就是所求的线段.
(2)这位同学作图的依据是______;
(3)如果,,,试用向量表示向量.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com