分析 (1)根据全等三角形的判定解答即可;
(2)根据DE⊥AC,BF⊥AC可以证明DE∥BF;再求证Rt△ABF≌Rt△CDE可得BF=DE,即可解题.
解答 解:(1)全等三角形有△ABF≌△CDE,△ABM≌△CDM,△BFM≌△DEM,共3对全等三角形.
故答案为:3;
(2)BF=DE,DE∥BF,理由如下:
∵DE⊥AC,BF⊥AC,
∴∠DEC=∠BFA=90°.
∴DE∥BF,
∵AE=CF,
∴AE+EF=CF+EF,即AF=CE.
在Rt△ABF和Rt△CDE中,
$\left\{\begin{array}{l}{AB=CD}\\{AF=CE}\end{array}\right.$,
∴Rt△ABF≌Rt△CDE(HL),
∴BF=DE.
点评 本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证Rt△ABF≌Rt△CDE是解题的关键.
科目:初中数学 来源: 题型:选择题
A. | 5 | B. | 4 | C. | 3 | D. | 2 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 2个 | B. | 3个 | C. | 4个 | D. | 5个 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com