精英家教网 > 初中数学 > 题目详情
精英家教网如图,点M是正方形ABCD的边BC上一点,点N是∠DAM的平分线与CD的交点,试说明:AM=DN+BM.
分析:求证△ADN≌△ABE,得∠BAE=∠DAN,根据∠BAE=∠DAN,求证∠MAE=∠E,得AM=ME,根据ME=BM+BE,且BE=DN可以证明AM=DN+BM.
解答:精英家教网证明:延长CB至E,使得BE=DN,
∵AB∥CD,则∠BAN=∠1,
在△ADN和△ABE中,
AD=AB
∠ADN=∠ABE
DN=BE

∴△ADN≌△ABE,
∴∠2=∠5,
∵∠MAE=∠3+∠2,∠BAN=∠3+∠4,∠4=∠5,∠1=∠E,
∴∠MAE=∠BAN,
∴∠DNA=∠MAE=∠E
即AM=ME,
∵ME=EB+BM
∴AM=EB+BM=DN+BM.
点评:本题考查了正方形各边相等,各内角为直角的性质,考查了等腰三角形底角相等的性质,考查了角平分线的性质,本题中求证AM=ME是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,点E是正方形ABCD边BA延长线上一点(AE<AD),连接DE.与正方形ABCD的外接圆相交于点F,BF与AD相交于点G.
(1)求证:BG=DE;
(2)若tan∠E=2,BE=6
2
,求BG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•包头)如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C=
135
135
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点E是正方形ABCD边BC的中点,H是BC延长线上的一点,EG⊥AE于点E,交边CD于G,
(1)求证:△ABE∽△ECG;
(2)延长EG交∠DCH的平分线于F,则AE与EF的数量关系是
AE=EF
AE=EF

(3)若E为线段BC上的任意一点,则它们之间的关系是否还能成立?若成立,请给予证明;若不能成立,则举一个反例.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•青铜峡市模拟)如图,点E是正方形ABCD内一点,△CDE是等边三角形,连接EB、EA.
求证:△ADE≌△BCE.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点M是正方形ABCD的边CD的中点,正方形ABCD的边长为4cm,点P按A-B-C-M-D的顺序在正方形的边上以每秒1cm的速度作匀速运动,设点P的运动时间为x(秒),△APM的面积为y(cm2
(1)直接写出点P运动2秒时,△AMP面积; 
(2)在点P运动4秒后至8秒这段时间内,y与x的函数关系式;
(3)在点P整个运动过程中,当x为何值时,y=3?

查看答案和解析>>

同步练习册答案