精英家教网 > 初中数学 > 题目详情
如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.
(1)求点B的坐标;
(2)求经过点A、O、B的抛物线的解析式;
(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.
(1)如图,过B点作BC⊥x轴,垂足为C,则∠BCO=90°,
∵∠AOB=120°,
∴∠BOC=60°,
又∵OA=OB=4,
∴OC=
1
2
OB=
1
2
×4=2,BC=OB•sin60°=4×
3
2
=2
3

∴点B的坐标为(-2,-2
3
);

(2)∵抛物线过原点O和点A、B,
∴可设抛物线解析式为y=ax2+bx,
将A(4,0),B(-2.-2
3
)代入,得
16a+4b=0
4a-2b=-2
3

解得
a=-
3
6
b=
2
3
3

∴此抛物线的解析式为y=-
3
6
x2+
2
3
3
x

(3)存在,
如图,抛物线的对称轴是直线x=2,直线x=2与x轴的交点为D,设点P的坐标为(2,y),
①若OB=OP,
则22+|y|2=42
解得y=±2
3

当y=2
3
时,在Rt△P′OD中,∠P′DO=90°,sin∠P′OD=
PD
OP
=
3
2

∴∠P′OD=60°,
∴∠P′OB=∠P′OD+∠AOB=60°+120°=180°,
即P′、O、B三点在同一直线上,
∴y=2
3
不符合题意,舍去,
∴点P的坐标为(2,-2
3

②若OB=PB,则42+|y+2
3
|2=42
解得y=-2
3

故点P的坐标为(2,-2
3
),
③若OP=BP,则22+|y|2=42+|y+2
3
|2
解得y=-2
3

故点P的坐标为(2,-2
3
),
综上所述,符合条件的点P只有一个,其坐标为(2,-2
3
),
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系中,点O为原点,直线y=kx+b与x轴交于点A(3,0),与y轴的正半轴交于点B,tan∠OAB=
3

(1)求这直线的解析式;
(2)将△OAB绕点A顺时针旋转60°后,点B落到点C的位置,求以点C为顶点且经过点A的抛物线的解析式;
(3)设(2)中的抛物线与x轴的另一个交点为点D,与y轴的交点为E.试判断△ODE是否与△OAB相似?如果认为相似,请加以证明;如果认为不相似,也请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=-x2+bx+c经过点A(3,0),B(-1,0).
(1)求抛物线的解析式;
(2)求抛物线的顶点坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数y=x2+bx+c中,函数y与自变量x的部分对应值如下表
x-1012
y10521
(1)求该二次函数的解析式;
(2)函数值y随x的增大而增大时,x的取值范围是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.
(1)求抛物线的解析式和对称轴;
(2)设点P是直线l上的一个动点,当△PAC是以AC为斜边的Rt△时,求点P的坐标;
(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由;
(4)设过点A的直线与抛物线在第一象限的交点为N,当△ACN的面积为
15
8
时,求直线AN的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数y1=ax2+bx+c(a≠0)的图象经过三点(1,0),(-3,0),(0,-
3
2
).
(1)求二次函数的解析式,并在给定的直角坐标系中作出这个函数的图象;
(2)若反比例函数y2=
2
x
(x>0)的图象与二次函数y1=ax2+bx+c(a≠0)的图象在第一象限内交于点A(x0,y0),x0落在两个相邻的正整数之间,请你观察图象,写出这两个相邻的正整数;
(3)若反比例函数y2=
k
x
(x>0,k>0)的图象与二次函数y1=ax2+bx+c(a≠0)的图象在第一象限内的交点A,点A的横坐标x0满足2<x0<3,试求实数k的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知,如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),其对称轴为直线x=2.
(1)求抛物线的解析式;
(2)若点P为抛物线的顶点,求△PBC的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,抛物线y=-
m-4
8
x2+
2m-7
3
x+m2-6m+8
经过原点O,点B(-2,n)在这条抛物线上.
(1)求抛物线的解析式;
(2)将直线y=-2x沿y轴向下平移b个单位后得到直线l,若直线l经过B点,求n、b的值;
(3)在(2)的条件下,设抛物线的对称轴与x轴交于点C,直线l与y轴交于点D,且与抛物线的对称轴交于点E.若P是抛物线上一点,且PB=PE,求P点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图.已知二次函数y=-x2+bx+3的图象与x轴的一个交点为A(4,0),与y轴交于点B.
(1)求此二次函数关系式和点B的坐标;
(2)在x轴的正半轴上是否存在点P.使得△PAB是以AB为底边的等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案