精英家教网 > 初中数学 > 题目详情
如图,抛物线y=-x2+2nx+n2-9(n为常数)经过坐标原点和x轴上另一点C,顶点在第一象限.
(1)确定抛物线所对应的函数关系式,并写出顶点坐标;
(2)在四边形OABC内有一矩形MNPQ,点M,N分别在OA,BC上,A点坐标为(2,8)B点坐标为(4,8),点Q,P在x轴上.当MN为多少时,矩形MNPQ的面积最大,最大面积是多少?
(1)∵抛物线过(0,0)点.
∴n2-9=0(1分)
∴n=±3,(2分)
∵顶点在第一象限,
∴-
b
2a
=n>0且
4ac-b2
4a
=
-4n2
-4
=n2>0(不写不扣分),
∴n=3(3分)
∴抛物线y=-x2+6x(4分)
顶点坐标为(3,9).(5分)

(2)如图所示,作AH⊥x轴于H.
设M点的坐标为(x,y)
∴△OMQ△OAH,
OQ
OH
=
MQ
AH
(7分)
x
2
=
y
8

∴y=4x(8分)
由抛物线的对称性可知:QP=MN=6-2x.(9分)
∴SMNPQ=4x(6-2x)=-8x2+24x(10分)
∴当x=-
b
2a
=-
24
-16
=
3
2
时,(11分)MN=6-
3
2
×2=3时,SMNPQ最大=-8×
9
4
+24×
3
2
=18,
答:MN等于3时,矩形MNPQ的最大面积是18.(12分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,二次函数y=ax2+bx+c的图象与x轴交于点A(1,0)和点B(点B在点A右侧),与y轴交于点C(0,2).
(1)请说明a、b、c的乘积是正数还是负数;
(2)若∠OCA=∠CBO,求这个二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示的直角坐标系中,若△ABC是等腰直角三角形,AB=AC=8
2
,D为斜边BC的中点.点P由点A出发沿线段AB作匀速运动,P′是P关于AD的对称点;点Q由点D出发沿射线DC方向作匀速运动,且满足四边形QDPP′是平行四边形.设平行四边形QDPP′的面积为y,DQ=x.
(1)求出y关于x的函数解析式;
(2)求当y取最大值时,过点P,A,P′的二次函数解析式;
(3)能否在(2)中所求的二次函数图象上找一点E使△EPP′的面积为20?若存在,求出E点坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某市政府大力扶持大学生创业,李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=-10x+500.
(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?
(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?
(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?
(成本=进价×销售量)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

王亮同学善于改进学习方法,他发现对解题过程进行回顾反思,效果会更好.某一天他利用30分钟时间进行自主学习.假设他用于解题的时间x(单位:分钟)与学习收益量y的关系如图甲所示,用于回顾反思的时间x(单位:分钟)与学习收益量y的关系如图乙所示(其中OA是抛物线的一部分,A为抛物线的顶点),且用于回顾反思的时间不超过用于解题的时间.

(1)求王亮解题的学习收益量y与用于解题的时间x之间的函数关系式,并写出自变量x的取值范围;
(2)求王亮回顾反思的学习收益量y与用于回顾反思的时间x之间的函数关系式;
(3)王亮如何分配解题和回顾反思的时间,才能使这30分钟的学习收益总量最大?
(学习收益总量=解题的学习收益量+回顾反思的学习收益量)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,某建筑物有一抛物线形的大门,小强想知道这道门的高度.他先测出门的宽度AB=8m,然后用一根长为4m的小竹竿CD竖直地接触地面和门的内壁,并测得AC=1m.小强画出了如图的草图,请你帮他算一算门的高度OE(精确到0.1m).

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

崇左市政府大楼前广场有一喷水池,水从地面喷出,喷出水的路径是一条抛物线.如果以水平地面为x轴,建立如图所示的平面直角坐标系,水在空中划出的曲线是抛物线y=-x2+4x(单位:米)的一部分.则水喷出的最大高度是______米.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,已知点A(-2,0),点B在x轴的正半轴上,点M在y轴的负半轴上,且|AB|=6,cos∠OBM=
5
5
,点C是M关于x轴的对称点.
(1)求过A、B、C三点的抛物线的函数表达式及其顶点D的坐标;
(2)设直线CD交x轴于点E,在线段OB的垂直平分线上求一点P,使点P到直线CD的距离等于点P到原点的O距离;
(3)在直线CD上方(1)中的抛物线(不包括C、D)上是否存在点N,使四边形NCOD的面积最大?若存在,求出点N的坐标及该四边形面积的最大值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

我市有一种可食用的野生菌,上市时,某经销公司按市场价格30元/千克收购了这种野生菌1000千克存放入冷库中,据预测,该野生菌的市场价格y(元)与存放天数x(天)之间的部分对应值如下表所示:
存放天数x(天)246810
市场价格y(元)3234363840
但冷冻存放这批野生菌时每天需要支出各种费用合计310元,而且这类野生菌在冷库中最多保存110天,同时,平均每天有3千克的野生菌损坏不能出售.
(1)请你从所学过的一次函数、二次函数和反比例函数中确定哪种函数能表示y与x的变化规律,并直接写出y与x之间的函数关系式;若存放x天后,将这批野生茵一次性出售,设这批野生菌的销售总额为P元,试求出P与x之间的函数关系式;
(2)该公司将这批野生菌存放多少天后出售可获得最大利润w元并求出最大利润.(利润=销售总额-收购成本-各种费用)
(3)该公司以最大利润将这批野生菌一次性出售的当天,再次按市场价格收购这种野生1180千克,存放入冷库中一段时间后一次性出售,其它条件不变,若要使两次的总盈利不低于4.5万元,请你确定此时市场的最低价格应为多少元?(结果精确到个位,参考数据:
14
≈3.742,
1.4
≈1.183

查看答案和解析>>

同步练习册答案