精英家教网 > 初中数学 > 题目详情
(2012•百色)如图,在菱形ABCD中,E、F是对角线AC上的两点,且AE=CF.
(1)图中有那几对全等三角形,请一一列举;
(2)求证:ED∥BF.
分析:(1)根据菱形的对称性,写出AC左右两边对应的三角形即可;
(2)根据菱形的对边平行且相等可得AB=CD,AB∥CD,再根据两直线平行,内错角相等可得∠BAC=∠DCA,然后求出AF=CE,利用“边角边”证明△ABF和△CDE全等,根据全等三角形对应角相等可得∠BFA=∠DEC,然后利用内错角相等两直线平行即可证明.
解答:(1)解:图中有三对全等三角形:①△ABC≌△ADC,②△ABF≌△CDE,③△ADE≌△CBF;

(2)证明:∵四边形ABCD是菱形,
∴AB=CD,AB∥CD,
∴∠BAC=∠DCA,
∵AE=CF,
∴AE+EF=CF+EF,
∴AF=CE,
在△ABF和△CDE中,
AB=CD
∠BAC=∠DCA
AF=CE

∴△ABF≌△CDE(SAS),
∴∠BFA=∠DEC,
∴ED∥BF.
点评:本题考查了菱形的性质,全等三角形的判定与性质,平行线的性质与判定,是基础题,熟记各性质与判定是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•百色)如图,Rt△OA1B1是由Rt△OAB绕点O顺时针方向旋转得到的,且A、O、B1三点共线.如果∠OAB=90°,∠AOB=30°,OA=
3
.则图中阴影部分的面积为
5
3
π-
3
2
5
3
π-
3
2
.(结果保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•百色)如图,在平面直角坐标系中,抛物线y=ax2+bx+6经过点A(-3,0)和点B(2,0).直线y=h(h为常数,且0<h<6)与BC交于点D,与y轴交于点E,与AC交于点F,与抛物线在第二象限交于点G.
(1)求抛物线的解析式;
(2)连接BE,求h为何值时,△BDE的面积最大;
(3)已知一定点M(-2,0).问:是否存在这样的直线y=h,使△OMF是等腰三角形?若存在,请求出h的值和点G的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•百色)如图,在矩形ABCD中,AB=6cm,BC=4cm.动点E从点B出发,沿着线路BC→CD→DA运动,在BC段的平均速度是1cm/s,在CD段的平均速度是2cm/s,在DA段的平均速度是4cm/s,到点A停止.设△ABE的面积为y(cm2),则y与点E的运动时间t(s)的函数关系图象大致是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•百色)如图,在平面直角坐标系中,等腰梯形ABCD的底边AB在x轴上,底边CD的端点D在y轴上,且A(-4,0),B(6,0),D(0,3).
(1)写出点C的坐标,并求出经过点C的反比例函数解析式和直线BC的解析式;
(2)若点E是BC的中点,请说明经过点C的反比例函数图象也经过点E.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•百色)如图,△ABC内接于⊙O,AB是直径,直线l是经过点C的切线,BD⊥l,垂足为D,且AC=8,sin∠ABC=
45

(1)求证:BC平分∠ABD;
(2)过点A作直线l的垂线,垂足为E(要求:用尺规作图,保留作图痕迹,不写作法、证明),并求出四边形ABDE的周长.

查看答案和解析>>

同步练习册答案