精英家教网 > 初中数学 > 题目详情
已知:如图,在平面直角坐标系xOy中,直线y=-
34
x+6
与x轴、y轴的交点分别为A、B两点,将∠OBA对折,使点O的对应点H落在直线AB上,折痕交x轴于点C.
(1)直接写出点C的坐标,并求过A、B、C三点的抛物线的解析式;
(2)若(1)中抛物线的顶点为D,在直线BC上是否存在点P,使得四边形ODAP为平行四边形?若存在,求出点P的坐标;若不存在,说明理由;
(3)若把(1)中的抛物线向左平移3.5个单位,则图象与x轴交于F、N(点F在点N的左侧)两点,交y轴于E点,则在此抛物线的对称轴上是否存在一点Q,使点Q到E、N两点的距离之差最大?若存在,请求出点Q的坐标;精英家教网若不存在,请说明理由.
分析:(1)根据轴对称和角平分线的性质以及勾股定理可以求出OC的长度,从而求出点C的坐标.再根据直线的解析式求出A、B的坐标,最后利用待定系数法就可以求出抛物线的解析式.
(2)根据(1)的解析式可以转化为顶点式而求出顶点坐标D,利用B、C的坐标求出BC的解析式,假设在直线BC上存在满足条件的点P,利用平行四边形的性质和三角形全等的性质求出点P的坐标,得到点P不在直线BC上,而得出结论.
(3)平移后根据(1)的解析式可以得到平移后的解析式,顶点坐标及对称轴,可以求出与坐标轴的交点F、N、E的坐标,连接EF,根据E、F的坐标求出其解析式,求出EF与对称轴的交点,就是Q点.
解答:精英家教网解:(1)连接CH
由轴对称得CH⊥AB,BH=BO,CH=CO
∴在△CHA中由勾股定理,得
AC2=CH2+AH2
∵直线y=-
3
4
x+6
与x轴、y轴的交点分别为A、B两点
∴当x=0时,y=6,当y=0时,x=8
∴B(0,6),A(8,0)
∴OB=6,OA=8,
在Rt△AOB中,由勾股定理,得
AB=10
设C(a,0),∴OC=a
∴CH=a,AH=4,AC=8-a,在Rt△AHC中,由勾股定理,得
(8-a)2=a2+42解得
a=3
C(3,0)
设抛物线的解析式为:y=ax2+bx+c,由题意,得
6=c
0=64a+8b+c
0=9a+3b+c

解得:
a=
1
4
b=-
11
4
c=6

∴抛物线的解析式为:y=
1
4
x2-
11
4
x+6

y=
1
4
(x-
11
2
)
2
-
25
16


(2)由(1)的结论,得
D(
11
2
,-
25
16

∴DF=
25
16

设BC的解析式为:y=kx+b,则有
6=b
0=3k+b

解得
b=6
k=-2

直线BC的解析式为:y=-2x+6
设存在点P使四边形ODAP是平行四边形,P(m,n)精英家教网
作PE⊥OA于E,HD交OA于F.
∴∠PEO=∠AFD=90°,PO=DA,PO∥DA
∴∠POE=∠DAF
∴△OPE≌△ADF
∴PE=DF=n=
25
16

25
16
=-2x+6

×=
71
32

P(
5
2
25
16

当x=
5
2
时,
y=-2×
5
2
+6=1≠
25
16

∴点P不再直线BC上,即直线BC上不存在满足条件的点P.

(3)由题意得,平移后的解析式为:
y=
1
4
(x-2)2-
25
16

∴对称轴为:x=2,
当x=0时,y=-
9
16

当y=0时,0=
1
4
(x-2)2-
25
16

解得:x1=-
1
2
x2=
9
2

∵F在N的左边精英家教网
F(-
1
2
,0),E(0,-
9
16
),N(
9
2
,0)
连接EF交x=2于Q,设EF的解析式为:y=kx+b,则有
0=-
1
2
k+b
-
9
16
=b

解得:
k=-
9
8
b=-
9
16

∴EF的解析式为:y=-
9
8
x-
9
16

y=-
9
8
x-
9
16
x=2

解得:
x=2
y=-
45
16

∴Q(2,-
45
16
).
点评:本题是一道二次函数的综合试题,考查了轴对称的性质,勾股定理的运用,待定系数法求函数的解析式的方法,图象的平移,平行四边形的判定及性质以及最值的确定等多个知识点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,直y=
3
2
x+b
与双曲线y=
16
x
相交于第一象限内的点A,AB、AC分别垂直于x轴、y轴,垂足分别为B、C,已知四边形ABCD是正方形,求直线所对应的一次函数的解析式以及它与x轴的交点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,原点O处有一乒乓球发射器向空中发射乒乓球,乒乓球飞行路线是一条抛物线,在地面上落点落在X轴上为点B.有人在线段OB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让乒乓球落入桶内.已知OB=4米,OC=3米,乒乓球飞行最大高度MN=5米,圆柱形桶的直径为0.5,高为0.3米(乒乓球的体积和圆柱形桶的厚度忽略不计).
(1)求乒乓球飞行路线抛物线的解析式;
(2)如果竖直摆放5个圆柱形桶时,乒乓球能不能落入桶内?
(3)当竖直摆放圆柱形桶
8,9,10,11或12
8,9,10,11或12
个时,乒乓球可以落入桶内?(直接写出满足条件的一个答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图1,在平面直角坐标系内,直线l1:y=-x+4与坐标轴分别相交于点A、B,与直线l2y=
13
x
相交于点C.
(1)求点C的坐标;
(2)如图1,平行于y轴的直线x=1交直线l1于点E,交直线l2于点D,平行于y轴的直x=a交直线l1于点M,交直线l2于点N,若MN=2ED,求a的值;
(3)如图2,点P是第四象限内一点,且∠BPO=135°,连接AP,探究AP与BP之间的位置关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源:2012届重庆万州区岩口复兴学校九年级下第一次月考数学试卷(带解析) 题型:解答题

已知:直角梯形AOBC在平面直角坐标系中的位置如图,若AC∥OB,OC平分∠AOB,CB⊥x轴于B,点A坐标为(3 ,4). 点P从原点O开始以2个单位/秒速度沿x轴正向运动 ;同时,一条平行于x轴的直线从AC开始以1个单位/秒速度竖直向下运动 ,交OA于点D,交OC于点M,交BC于点E. 当点P到达点B时,直线也随即停止运动.

(1)求出点C的坐标;
(2)在这一运动过程中, 四边形OPEM是什么四边形?请说明理由。若
用y表示四边形OPEM的面积 ,直接写出y关于t的函数关系式及t的
范围;并求出当四边形OPEM的面积y的最大值?
(3)在整个运动过程中,是否存在某个t值,使⊿MPB为等腰三角形?
若有,请求出所有满足要求的t值.

查看答案和解析>>

科目:初中数学 来源:2013年浙江省湖州市中考数学模拟试卷(十一)(解析版) 题型:解答题

如图,在平面直角坐标系中,原点O处有一乒乓球发射器向空中发射乒乓球,乒乓球飞行路线是一条抛物线,在地面上落点落在X轴上为点B.有人在线段OB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让乒乓球落入桶内.已知OB=4米,OC=3米,乒乓球飞行最大高度MN=5米,圆柱形桶的直径为0.5,高为0.3米(乒乓球的体积和圆柱形桶的厚度忽略不计).
(1)求乒乓球飞行路线抛物线的解析式;
(2)如果竖直摆放5个圆柱形桶时,乒乓球能不能落入桶内?
(3)当竖直摆放圆柱形桶______个时,乒乓球可以落入桶内?(直接写出满足条件的一个答案)

查看答案和解析>>

同步练习册答案