分析 已知PA=a,PB=2a,PC=3a,并不在同一个三角形中,因为AB=BC,可将△ABP绕点B顺时针方向旋转90°得△CBQ,连接PQ,构成两个特殊三角形,可求∠APB的度数;
解答 解:将△ABP绕点B顺时针方向旋转90°得△CBQ,如图,
则△ABP≌△CBQ且PB⊥QB,
于是PB=QB=2a,PQ=2$\sqrt{2}$a,
在△PQC中,
∵PC2=9a2,PQ2+QC2=9a2,
∴PC2=PQ2+QC2.
∴∠PQC=90°,
∵△PBQ是等腰直角三角形,
∴∠BPQ=∠BQP=45°,故∠APB=∠CQB=90°+45°=135°.
点评 此题主要考查了旋转的性质以及等腰直角三角形的性质,正确应用旋转的性质是解题关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com