精英家教网 > 初中数学 > 题目详情
11.对于二次函数y=-x2+2x,有下列四个结论:①它的对称轴是直线x=1;②设y1=-x12+2x1,y2=-x22+2x2,则当x2>x1时,有y2>y1;③它的图象与x轴的两个交点是(0,0)和(2,0);④当0<x<2时,y>0.其中正确的结论的个数为3个.

分析 利用配方法求出二次函数对称轴,再求出图象与x轴交点坐标,进而结合二次函数性质得出答案.

解答 解:y=-x2+2x=-(x-1)2+1,故①它的对称轴是直线x=1,正确;
②∵直线x=1两旁部分增减性不一样,∴设y1=-x12+2x1,y2=-x22+2x2,则当x2>x1时,有y2>y1或y2<y1,错误;
③当y=0,则x(-x+2)=0,解得:x1=0,x2=2,
故它的图象与x轴的两个交点是(0,0)和(2,0),正确;
④∵a=-1<0,
∴抛物线开口向下,
∵它的图象与x轴的两个交点是(0,0)和(2,0),
∴当0<x<2时,y>0,正确.
故答案为3.

点评 本题主要考查了二次函数的性质以及一元二次方程的解法,得出抛物线的对称轴和其交点坐标是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

1.已知平行四边形ABCD,DC=kBC,∠A=60°,E为AB的中点,∠PEQ=120°,EP交AD于点P,EQ交∠BCD的外角平分线于点Q.
(1)如图一,当k=1时,求证:QE=3PE;
(2)如图二,当k=2时,写出PE与QE的数量关系EQ=2PE;
(3)如图三,在(1)的条件下,当P为AD的中点时,连接DE和PQ,交点为G,连接GC,BD交点为M,若AB=4,求CM的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.当-2≤x≤2时,函数y=kx-k+1(k为常数且k<0)有最大值3,则k的值为-$\frac{2}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.下列语句:
①任何数的零次方都等于1;
②如果两条直线被第三条直线所截,那么同位角相等;
③一个图形和它经过平移所得的图形中,两组对应点的连线平行且相等;
④平行线间的距离处处相等.
说法错误的有(  )个.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.(1)2$\sqrt{3}$-|$\sqrt{2}$-$\sqrt{3}$|;
(2)$\sqrt{\frac{16}{9}}$+$\root{3}{-8}$+$\sqrt{(-\frac{2}{3})^{2}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.某电视机厂要印制产品宣传材料,甲印刷厂提出:每份材料收1元印刷费,另收1000元制版费,乙厂提出:每份材料收2元印刷费,不收制版费.
(1)分别写出两厂的收费y(元)与印制数量x(份)之间的函数解析式;
(2)电视机厂拟拿出3000元用于印刷宣传材料,找哪家印刷厂印刷的宣传材料能多一些?
(3)印刷800份宣传材料时,选择哪家印刷厂比较合算?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图所示,∠AOB=30°,∠BOC=40°,∠COD=26°,OE平分∠AOD,求∠BOE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.如图所示,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省(  )
A.1元B.2元C.3元D.4元

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.(1)计算:2-1+($\frac{3}{2}$-$\sqrt{2}$)+$\sqrt{4}$+($\frac{1}{2}$)0
(2)解方程:x2-2x=1.

查看答案和解析>>

同步练习册答案